You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
4.1 KiB
113 lines
4.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/framework/operator.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
|
|
// Use std::random and thrust::random(thrust is a std library in CUDA) to
|
|
// implement uniform random.
|
|
template <typename T>
|
|
class CPUUniformRandomKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* tensor = ctx.Output<framework::Tensor>("Out");
|
|
T* data = tensor->mutable_data<T>(ctx.GetPlace());
|
|
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
|
|
std::minstd_rand engine;
|
|
if (seed == 0) {
|
|
seed = std::random_device()();
|
|
}
|
|
engine.seed(seed);
|
|
std::uniform_real_distribution<T> dist(
|
|
static_cast<T>(ctx.Attr<float>("min")),
|
|
static_cast<T>(ctx.Attr<float>("max")));
|
|
int64_t size = tensor->numel();
|
|
for (int64_t i = 0; i < size; ++i) {
|
|
data[i] = dist(engine);
|
|
}
|
|
}
|
|
};
|
|
|
|
class UniformRandomOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of UniformRandomOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(
|
|
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
|
|
"uniform_random's min must less then max");
|
|
auto& shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
std::vector<int64_t> temp;
|
|
temp.reserve(shape.size());
|
|
for (auto dim : shape) {
|
|
temp.push_back(static_cast<int64_t>(dim));
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(temp));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetActualKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
static_cast<framework::proto::DataType>(ctx.Attr<int>("dtype")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
UniformRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddOutput("Out", "(Tensor) The output tensor of uniform random op");
|
|
AddComment(R"DOC(
|
|
Uniform random operator.
|
|
|
|
This operator initializes a tensor with random values sampled from a
|
|
uniform distribution.
|
|
|
|
)DOC");
|
|
AddAttr<std::vector<int>>("shape",
|
|
"(vector<int>) The shape of the output tensor");
|
|
AddAttr<float>("min",
|
|
"(float, default -1.0) "
|
|
"Minimum value of uniform random")
|
|
.SetDefault(-1.0f);
|
|
AddAttr<float>("max",
|
|
"(float, default 1.0) "
|
|
"Maximun value of uniform random")
|
|
.SetDefault(1.0f);
|
|
AddAttr<int>("seed",
|
|
"(int, default 0) "
|
|
"Random seed used for generating samples. "
|
|
"0 means use a seed generated by the system.")
|
|
.SetDefault(0);
|
|
AddAttr<int>("dtype", "(int, default 5(FP32)) Output tensor data type")
|
|
.SetDefault(framework::proto::DataType::FP32);
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_WITHOUT_GRADIENT(uniform_random, paddle::operators::UniformRandomOp,
|
|
paddle::operators::UniformRandomOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(uniform_random,
|
|
paddle::operators::CPUUniformRandomKernel<float>,
|
|
paddle::operators::CPUUniformRandomKernel<double>);
|