You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/dist_se_resnext.py

266 lines
9.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal
from test_dist_base import TestDistRunnerBase, runtime_main
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class SE_ResNeXt():
def __init__(self, layers=50):
self.params = train_parameters
self.layers = layers
def net(self, input, class_dim=1000):
layers = self.layers
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 50:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 6, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
elif layers == 101:
cardinality = 32
reduction_ratio = 16
depth = [3, 4, 23, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
elif layers == 152:
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=3,
stride=2,
act='relu')
conv = self.conv_bn_layer(
input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
conv = self.conv_bn_layer(
input=conv,
num_filters=128,
filter_size=3,
stride=1,
act='relu')
conv = fluid.layers.pool2d(
input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio)
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
out = fluid.layers.fc(
input=drop,
size=class_dim,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)))
return out
def shortcut(self, input, ch_out, stride):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
filter_size = 1
return self.conv_bn_layer(input, ch_out, filter_size, stride)
else:
return input
def bottleneck_block(self, input, num_filters, stride, cardinality,
reduction_ratio):
conv0 = self.conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu')
conv2 = self.conv_bn_layer(
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
scale = self.squeeze_excitation(
input=conv2,
num_channels=num_filters * 2,
reduction_ratio=reduction_ratio)
short = self.shortcut(input, num_filters * 2, stride)
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
# avoid pserver CPU init differs from GPU
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act)
def squeeze_excitation(self, input, num_channels, reduction_ratio):
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(
input=pool,
size=num_channels // reduction_ratio,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
act='relu')
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
act='sigmoid')
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
class DistSeResneXt2x2(TestDistRunnerBase):
def get_model(self, batch_size=2, use_dgc=False):
# Input data
image = fluid.layers.data(
name="data", shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
# Train program
model = SE_ResNeXt(layers=50)
out = model.net(input=image, class_dim=102)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
# Evaluator
test_program = fluid.default_main_program().clone(for_test=True)
# Optimization
total_images = 6149 # flowers
epochs = [30, 60, 90]
step = int(total_images / batch_size + 1)
bd = [step * e for e in epochs]
base_lr = 0.1
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
if not use_dgc:
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
else:
optimizer = fluid.optimizer.DGCMomentumOptimizer(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
rampup_begin_step=0,
regularization=fluid.regularizer.L2Decay(1e-4))
optimizer.minimize(avg_cost)
# Reader
train_reader = paddle.batch(
paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)
return test_program, avg_cost, train_reader, test_reader, acc_top1, out
if __name__ == "__main__":
runtime_main(DistSeResneXt2x2)