You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
4.3 KiB
137 lines
4.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
import pickle
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dygraph
|
|
from paddle.fluid import core
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
|
|
|
|
|
|
class SimpleImgConvPool(fluid.dygraph.Layer):
|
|
def __init__(self,
|
|
name_scope,
|
|
num_channels,
|
|
num_filters,
|
|
filter_size,
|
|
pool_size,
|
|
pool_stride,
|
|
pool_padding=0,
|
|
pool_type='max',
|
|
global_pooling=False,
|
|
conv_stride=1,
|
|
conv_padding=0,
|
|
conv_dilation=1,
|
|
conv_groups=1,
|
|
act=None,
|
|
use_cudnn=False,
|
|
param_attr=None,
|
|
bias_attr=None):
|
|
super(SimpleImgConvPool, self).__init__(name_scope)
|
|
|
|
self._conv2d = Conv2D(
|
|
self.full_name(),
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=conv_stride,
|
|
padding=conv_padding,
|
|
dilation=conv_dilation,
|
|
groups=conv_groups,
|
|
param_attr=None,
|
|
bias_attr=None,
|
|
use_cudnn=use_cudnn)
|
|
|
|
self._pool2d = Pool2D(
|
|
self.full_name(),
|
|
pool_size=pool_size,
|
|
pool_type=pool_type,
|
|
pool_stride=pool_stride,
|
|
pool_padding=pool_padding,
|
|
global_pooling=global_pooling,
|
|
use_cudnn=use_cudnn)
|
|
|
|
def forward(self, inputs):
|
|
x = self._conv2d(inputs)
|
|
x = self._pool2d(x)
|
|
return x
|
|
|
|
|
|
class MNIST(fluid.dygraph.Layer):
|
|
def __init__(self, name_scope):
|
|
super(MNIST, self).__init__(name_scope)
|
|
|
|
self._simple_img_conv_pool_1 = SimpleImgConvPool(
|
|
self.full_name(), 1, 20, 5, 2, 2, act="relu")
|
|
|
|
self._simple_img_conv_pool_2 = SimpleImgConvPool(
|
|
self.full_name(), 20, 50, 5, 2, 2, act="relu")
|
|
|
|
pool_2_shape = 50 * 4 * 4
|
|
SIZE = 10
|
|
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
|
|
self._fc = FC(self.full_name(),
|
|
10,
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.NormalInitializer(
|
|
loc=0.0, scale=scale)),
|
|
act="softmax")
|
|
|
|
def forward(self, inputs, label):
|
|
x = self._simple_img_conv_pool_1(inputs)
|
|
x = self._simple_img_conv_pool_2(x)
|
|
cost = self._fc(x)
|
|
loss = fluid.layers.cross_entropy(cost, label)
|
|
avg_loss = fluid.layers.mean(loss)
|
|
return avg_loss
|
|
|
|
|
|
class TestMnist(TestParallelDyGraphRunnerBase):
|
|
def get_model(self):
|
|
model = MNIST("mnist")
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=2, drop_last=True)
|
|
opt = fluid.optimizer.SGD(learning_rate=1e-3)
|
|
return model, train_reader, opt
|
|
|
|
def run_one_loop(self, model, opt, data):
|
|
batch_size = len(data)
|
|
dy_x_data = np.array([x[0].reshape(1, 28, 28)
|
|
for x in data]).astype('float32')
|
|
y_data = np.array(
|
|
[x[1] for x in data]).astype('int64').reshape(batch_size, 1)
|
|
img = to_variable(dy_x_data)
|
|
label = to_variable(y_data)
|
|
label.stop_gradient = True
|
|
|
|
avg_loss = model(img, label)
|
|
|
|
return avg_loss
|
|
|
|
|
|
if __name__ == "__main__":
|
|
runtime_main(TestMnist)
|