You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
119 lines
3.3 KiB
119 lines
3.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
def affine_channel(x, scale, bias, layout):
|
|
C = x.shape[1] if layout == 'NCHW' else x.shape[-1]
|
|
if len(x.shape) == 4:
|
|
new_shape = (1, C, 1, 1) if layout == 'NCHW' else (1, 1, 1, C)
|
|
else:
|
|
new_shape = (1, C)
|
|
scale = scale.reshape(new_shape)
|
|
bias = bias.reshape(new_shape)
|
|
return x * scale + bias
|
|
|
|
|
|
class TestAffineChannelOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "affine_channel"
|
|
self.init_test_case()
|
|
|
|
x = np.random.random(self.shape).astype("float32")
|
|
scale = np.random.random(self.C).astype("float32")
|
|
bias = np.random.random(self.C).astype("float32")
|
|
|
|
y = affine_channel(x, scale, bias, self.layout)
|
|
|
|
self.inputs = {'X': x, 'Scale': scale, 'Bias': bias}
|
|
self.attrs = {'data_layout': self.layout}
|
|
self.outputs = {'Out': y}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X', 'Scale', 'Bias'], 'Out')
|
|
|
|
def test_check_grad_stopgrad_dx(self):
|
|
self.check_grad(['Scale', 'Bias'], 'Out', no_grad_set=set('X'))
|
|
|
|
def test_check_grad_stopgrad_dscale_dbias(self):
|
|
self.check_grad(['X'], 'Out', no_grad_set=set(['Scale', 'Bias']))
|
|
|
|
def init_test_case(self):
|
|
self.shape = [2, 32, 14, 14]
|
|
self.C = 32
|
|
self.layout = 'NCHW'
|
|
|
|
|
|
class TestAffineChannelNHWC(TestAffineChannelOp):
|
|
def init_test_case(self):
|
|
self.shape = [2, 14, 14, 32]
|
|
self.C = 32
|
|
self.layout = 'NHWC'
|
|
|
|
def test_check_grad_stopgrad_dx(self):
|
|
return
|
|
|
|
def test_check_grad_stopgrad_dscale_dbias(self):
|
|
return
|
|
|
|
|
|
class TestAffineChannel2D(TestAffineChannelOp):
|
|
def init_test_case(self):
|
|
self.shape = [16, 64]
|
|
self.C = 64
|
|
self.layout = 'NCHW'
|
|
|
|
def test_check_grad_stopgrad_dx(self):
|
|
return
|
|
|
|
def test_check_grad_stopgrad_dscale_dbias(self):
|
|
return
|
|
|
|
|
|
class TestAffineChannelNCHWLargeShape(TestAffineChannelOp):
|
|
def init_test_case(self):
|
|
self.shape = [4, 128, 112, 112]
|
|
self.C = 128
|
|
self.layout = 'NCHW'
|
|
|
|
# since the gradient check is very slow in large shape, so skip check_grad
|
|
def test_check_grad(self):
|
|
pass
|
|
|
|
def test_check_grad_stopgrad_dx(self):
|
|
pass
|
|
|
|
def test_check_grad_stopgrad_dscale_dbias(self):
|
|
pass
|
|
|
|
|
|
class TestAffineChannelNHWCLargeShape(TestAffineChannelNCHWLargeShape):
|
|
def init_test_case(self):
|
|
self.shape = [64, 32, 32, 512]
|
|
self.C = 512
|
|
self.layout = 'NHWC'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|