You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
2.2 KiB
71 lines
2.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import sys
|
|
import math
|
|
from op_test import OpTest
|
|
import copy
|
|
|
|
|
|
def box_clip(input_box, im_info, output_box):
|
|
im_w = round(im_info[1] / im_info[2])
|
|
im_h = round(im_info[0] / im_info[2])
|
|
output_box[:, :, 0] = np.maximum(
|
|
np.minimum(input_box[:, :, 0], im_w - 1), 0)
|
|
output_box[:, :, 1] = np.maximum(
|
|
np.minimum(input_box[:, :, 1], im_h - 1), 0)
|
|
output_box[:, :, 2] = np.maximum(
|
|
np.minimum(input_box[:, :, 2], im_w - 1), 0)
|
|
output_box[:, :, 3] = np.maximum(
|
|
np.minimum(input_box[:, :, 3], im_h - 1), 0)
|
|
|
|
|
|
def batch_box_clip(input_boxes, im_info, lod):
|
|
n = input_boxes.shape[0]
|
|
m = input_boxes.shape[1]
|
|
output_boxes = np.zeros((n, m, 4), dtype=np.float32)
|
|
cur_offset = 0
|
|
for i in range(len(lod)):
|
|
box_clip(input_boxes[cur_offset:(cur_offset + lod[i]), :, :],
|
|
im_info[i, :],
|
|
output_boxes[cur_offset:(cur_offset + lod[i]), :, :])
|
|
cur_offset += lod[i]
|
|
return output_boxes
|
|
|
|
|
|
class TestBoxClipOp(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "box_clip"
|
|
lod = [[1, 2, 3]]
|
|
input_boxes = np.random.random((6, 10, 4)) * 5
|
|
im_info = np.array([[5, 8, 1.], [6, 6, 1.], [7, 5, 1.]])
|
|
output_boxes = batch_box_clip(input_boxes, im_info, lod[0])
|
|
|
|
self.inputs = {
|
|
'Input': (input_boxes.astype('float32'), lod),
|
|
'ImInfo': im_info.astype('float32'),
|
|
}
|
|
self.outputs = {'Output': output_boxes}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|