You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_collective_base.py

274 lines
9.8 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import six
import sys
import subprocess
import traceback
import functools
import pickle
from contextlib import closing
from six import string_types
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
class TestCollectiveRunnerBase(object):
def get_model(self, train_prog, startup_prog):
raise NotImplementedError(
"get model should be implemented by child class.")
def wait_server_ready(self, endpoints):
assert not isinstance(endpoints, string_types)
while True:
all_ok = True
not_ready_endpoints = []
for ep in endpoints:
ip_port = ep.split(":")
with closing(
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as sock:
sock.settimeout(2)
result = sock.connect_ex((ip_port[0], int(ip_port[1])))
if result != 0:
all_ok = False
not_ready_endpoints.append(ep)
if not all_ok:
sys.stderr.write("server not ready, wait 3 sec to retry...\n")
sys.stderr.write("not ready endpoints:" + str(
not_ready_endpoints) + "\n")
sys.stderr.flush()
time.sleep(3)
else:
break
#endpoints should be ["ip1:port1","ip2:port2"]
def initCommunicator(self, program, rank, nranks, wait_port,
current_endpoint, endpoints):
other_endpoints = endpoints[:]
other_endpoints.remove(current_endpoint)
if rank == 0 and wait_port:
self.wait_server_ready(other_endpoints)
block = program.global_block()
nccl_id_var = block.create_var(
name=nameGen.generate('nccl_id'),
persistable=True,
type=core.VarDesc.VarType.RAW)
block.append_op(
type='c_gen_nccl_id',
inputs={},
outputs={'Out': nccl_id_var},
attrs={
'rank': rank,
'endpoint': current_endpoint,
'other_endpoints': other_endpoints
})
block.append_op(
type='c_comm_init',
inputs={'X': nccl_id_var},
outputs={},
attrs={
'nranks': nranks,
'rank': rank,
'ring_id': self.global_ring_id
})
def run_trainer(self, args):
train_prog = fluid.Program()
startup_prog = fluid.Program()
endpoints = args["endpoints"].split(",")
rank = args["trainerid"]
current_endpoint = args["currentendpoint"]
nranks = 2
self.initCommunicator(startup_prog, rank, nranks, True,
current_endpoint, endpoints)
result = self.get_model(train_prog, startup_prog)
device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = fluid.CUDAPlace(
device_id) #if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
np.random.seed(os.getpid())
indata = np.random.random((10, 1000))
out = exe.run(train_prog,
feed={'tindata': indata},
fetch_list=[result.name])
if six.PY2:
print(pickle.dumps(out))
else:
sys.stdout.buffer.write(pickle.dumps(out))
def runtime_main(test_class, col_type, sub_type):
args = {}
model = test_class()
args["deviceid"] = os.getenv("FLAGS_selected_gpus")
args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
args["col_type"] = col_type
model.run_trainer(args)
import paddle.compat as cpt
import socket
from contextlib import closing
class TestDistBase(unittest.TestCase):
def setUp(self):
self._port_set = set()
self._trainers = 2
self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
self._find_free_port(), self._find_free_port())
self._python_interp = sys.executable
def _find_free_port(self):
def __free_port():
with closing(socket.socket(socket.AF_INET,
socket.SOCK_STREAM)) as s:
s.bind(('', 0))
return s.getsockname()[1]
while True:
port = __free_port()
if port not in self._port_set:
self._port_set.add(port)
return port
def _run_cluster(self, model_file, envs):
worker_endpoints = self._ps_endpoints.split(",")
w0_ep, w1_ep = worker_endpoints
#print("w0_ep:",w0_ep," w1_ep:",w1_ep)
env0 = {
"FLAGS_selected_gpus": "2",
"PADDLE_TRAINER_ID": "0",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
"PADDLE_CURRENT_ENDPOINT": w0_ep
}
env1 = {
"FLAGS_selected_gpus": "3",
"PADDLE_TRAINER_ID": "1",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
"PADDLE_CURRENT_ENDPOINT": w1_ep
}
#update environment
env0.update(envs)
env1.update(envs)
tr_cmd = "%s %s"
tr0_cmd = tr_cmd % (self._python_interp, model_file)
tr1_cmd = tr_cmd % (self._python_interp, model_file)
tr0_pipe = open("/tmp/tr0_err.log", "wb")
tr1_pipe = open("/tmp/tr1_err.log", "wb")
#print(tr0_cmd)
tr0_proc = subprocess.Popen(
tr0_cmd.strip().split(),
stdout=subprocess.PIPE,
stderr=tr0_pipe,
env=env0)
tr1_proc = subprocess.Popen(
tr0_cmd.strip().split(),
stdout=subprocess.PIPE,
stderr=tr1_pipe,
env=env1)
tr0_out, tr0_err = tr0_proc.communicate()
tr1_out, tr1_err = tr1_proc.communicate()
sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
# close trainer file
tr0_pipe.close()
tr1_pipe.close()
return pickle.loads(tr0_out), pickle.loads(
tr1_out), tr0_proc.pid, tr1_proc.pid
def check_with_place(self,
model_file,
col_type,
check_error_log=False,
need_envs={}):
required_envs = {
"FLAGS_fraction_of_gpu_memory_to_use": "0.15",
"FLAGS_eager_delete_tensor_gb": "0.0",
"PATH": os.getenv("PATH"),
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
"LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
"GLOG_v": "0",
"NCCL_P2P_DISABLE": "1"
}
required_envs.update(need_envs)
if check_error_log:
required_envs["GLOG_v"] = "3"
required_envs["GLOG_logtostderr"] = "1"
tr0_out, tr1_out, pid0, pid1 = self._run_cluster(model_file,
required_envs)
np.random.seed(pid0)
input1 = np.random.random((10, 1000))
np.random.seed(pid1)
input2 = np.random.random((10, 1000))
if col_type == "allgather":
need_result = np.vstack((input1, input2))
self.assertTrue(np.allclose(tr0_out, need_result))
self.assertTrue(np.allclose(tr1_out, need_result))
elif col_type == "broadcast":
need_result = input2
self.assertTrue(np.allclose(tr0_out, need_result))
self.assertTrue(np.allclose(tr1_out, need_result))
elif col_type == "allreduce":
need_result = input1 + input2
self.assertTrue(
np.allclose(
tr0_out, need_result, rtol=1e-05, atol=1e-05))
self.assertTrue(
np.allclose(
tr1_out, need_result, rtol=1e-05, atol=1e-05))
elif col_type == "reduce_scatter":
tmp = input1 + input2
need_result1 = tmp[0:tmp.shape[0] // 2]
need_result2 = tmp[tmp.shape[0] // 2:]
self.assertTrue(
np.allclose(
tr0_out, need_result1, rtol=1e-05, atol=1e-05))
self.assertTrue(
np.allclose(
tr1_out, need_result2, rtol=1e-05, atol=1e-05))
elif col_type == "reduce_slicegather":
slicesize = input1.shape[0] // 2
tmp10 = input1[0:slicesize]
tmp11 = input2[0:slicesize]
need_result1 = np.concatenate((tmp10, tmp11), axis=1)
tmp20 = input1[slicesize:]
tmp21 = input2[slicesize:]
need_result2 = np.concatenate((tmp20, tmp21), axis=1)
self.assertTrue(np.allclose(tr0_out, need_result1))
self.assertTrue(np.allclose(tr1_out, need_result2))
else:
pass