You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
5.5 KiB
191 lines
5.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
|
|
from test_conv2d_op import conv2d_forward_naive
|
|
|
|
|
|
class TestConv2dFusionOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "conv2d_fusion"
|
|
self.exhaustive_search = False
|
|
self.data_format = "AnyLayout"
|
|
self.dtype = np.float32
|
|
self.activation = 'relu'
|
|
self.add_bias = True
|
|
self.add_residual_data = True
|
|
self.channels = None
|
|
self.outputs = None
|
|
|
|
self.init_group()
|
|
self.init_dilation()
|
|
self.init_test_case()
|
|
self.init_bias_residual()
|
|
self.init_activation()
|
|
self.set_search_method()
|
|
|
|
conv2d_param = {
|
|
'stride': self.stride,
|
|
'pad': self.pad,
|
|
'dilation': self.dilations
|
|
}
|
|
|
|
input = np.random.random(self.input_size).astype(self.dtype)
|
|
filter = np.random.random(self.filter_size).astype(self.dtype)
|
|
|
|
self.output, _, _, _, _ = conv2d_forward_naive(
|
|
input, filter, self.groups, conv2d_param)
|
|
self.output = self.output.astype(self.dtype)
|
|
|
|
self.inputs = {
|
|
'Input': OpTest.np_dtype_to_fluid_dtype(input),
|
|
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
|
|
}
|
|
|
|
if self.add_residual_data:
|
|
residual_data = np.random.random(self.output.shape).astype(
|
|
self.dtype)
|
|
self.inputs['ResidualData'] = OpTest.np_dtype_to_fluid_dtype(
|
|
residual_data)
|
|
self.output += residual_data
|
|
|
|
if self.add_bias:
|
|
bias = np.random.random(self.filter_size[0]).astype(self.dtype)
|
|
self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias)
|
|
self.output = self.output + bias.reshape((1, bias.size, 1, 1))
|
|
|
|
assert self.activation in ['relu', 'identity']
|
|
if self.activation == 'relu':
|
|
self.output = np.maximum(self.output, 0)
|
|
|
|
self.attrs = {
|
|
'strides': self.stride,
|
|
'paddings': self.pad,
|
|
'groups': self.groups,
|
|
'dilations': self.dilations,
|
|
'data_format': self.data_format,
|
|
'exhaustive_search': self.exhaustive_search,
|
|
'activation': self.activation,
|
|
'split_channels': self.channels
|
|
}
|
|
self.outputs = {'Output': self.output}
|
|
|
|
self.set_outputs()
|
|
|
|
def has_cuda(self):
|
|
return core.is_compiled_with_cuda()
|
|
|
|
def test_check_output(self):
|
|
if self.has_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
else:
|
|
pass
|
|
|
|
def init_test_case(self):
|
|
self.pad = [0, 0]
|
|
self.stride = [1, 1]
|
|
self.input_size = [2, 3, 5, 5] # NCHW
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
f_c = self.input_size[1] // self.groups
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
def init_dilation(self):
|
|
self.dilations = [1, 1]
|
|
|
|
def init_group(self):
|
|
self.groups = 1
|
|
|
|
def init_bias_residual(self):
|
|
self.add_bias = True
|
|
self.add_residual_data = True
|
|
|
|
def init_activation(self):
|
|
self.activation = 'relu'
|
|
|
|
def set_search_method(self):
|
|
self.exhaustive_search = False
|
|
|
|
def set_outputs(self):
|
|
pass
|
|
|
|
|
|
class TestWithoutResidual(TestConv2dFusionOp):
|
|
def init_bias_residual(self):
|
|
self.add_residual_data = False
|
|
|
|
|
|
class TestIdentityActivation(TestConv2dFusionOp):
|
|
def init_activation(self):
|
|
self.activation = 'identity'
|
|
|
|
|
|
class TestIdentityActivation(TestConv2dFusionOp):
|
|
def init_activation(self):
|
|
self.activation = 'identity'
|
|
self.add_residual_data = False
|
|
|
|
|
|
class TestWithGroup(TestConv2dFusionOp):
|
|
def init_group(self):
|
|
self.groups = 3
|
|
|
|
|
|
class TestWithDilation(TestConv2dFusionOp):
|
|
def init_test_case(self):
|
|
self.pad = [0, 0]
|
|
self.stride = [1, 1]
|
|
self.input_size = [2, 3, 10, 10] # NCHW
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
f_c = self.input_size[1] // self.groups
|
|
self.filter_size = [6, f_c, 3, 3]
|
|
|
|
def init_dilation(self):
|
|
self.dilations = [2, 2]
|
|
|
|
def init_group(self):
|
|
self.groups = 3
|
|
|
|
|
|
class TestCUDNNExhaustiveSearch(TestConv2dFusionOp):
|
|
def set_search_method(self):
|
|
self.exhaustive_search = True
|
|
|
|
|
|
class TestMultipleOutputs(TestConv2dFusionOp):
|
|
def init_test_case(self):
|
|
self.pad = [1, 1]
|
|
self.stride = [1, 1]
|
|
self.input_size = [1, 32, 17, 17] # NCHW
|
|
assert np.mod(self.input_size[1], self.groups) == 0
|
|
f_c = self.input_size[1] // self.groups
|
|
self.filter_size = [126, f_c, 3, 3]
|
|
self.channels = [84, 42]
|
|
|
|
def set_outputs(self):
|
|
out1 = self.output[:, 0:84, :, :]
|
|
out2 = self.output[:, 84:126, :, :]
|
|
self.outputs['Outputs'] = [('out1', out1), ('out2', out2)]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|