You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py

317 lines
10 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
def conv2dtranspose_forward_naive(input_, filter_, attrs):
in_n, in_c, in_h, in_w = input_.shape
f_c, f_out_c, f_h, f_w = filter_.shape
groups = attrs['groups']
assert in_c == f_c
out_c = f_out_c * groups
sub_in_c = in_c // groups
stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
'dilations']
d_bolck_h = dilations[0] * (f_h - 1) + 1
d_bolck_w = dilations[1] * (f_w - 1) + 1
out_h = (in_h - 1) * stride[0] + d_bolck_h
out_w = (in_w - 1) * stride[1] + d_bolck_w
if 'output_size' in attrs:
output_size = attrs['output_size']
out_h = output_size[0] + 2 * pad[0]
out_w = output_size[1] + 2 * pad[1]
out = np.zeros((in_n, out_c, out_h, out_w))
for n in range(in_n):
for i in range(in_h):
for j in range(in_w):
for g in range(groups):
input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
j] # (c)
input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
input_masked = np.tile(input_masked, (1, f_h, f_w))
for k in range(f_out_c):
tmp_out = np.sum(
input_masked *
filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
axis=0)
i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
j1, j2 = j * stride[0], j * stride[0] + d_bolck_h
out[n, g * f_out_c + k, i1:i2:dilations[0], j1:j2:
dilations[1]] += tmp_out
out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]]
return out
class TestConv2dTransposeOp(OpTest):
def setUp(self):
# init as conv transpose
self.is_test = False
self.use_cudnn = False
self.use_mkldnn = False
self.output_size = None
self.data_format = "AnyLayout"
self.init_op_type()
self.init_test_case()
input_ = np.random.random(self.input_size).astype("float32")
filter_ = np.random.random(self.filter_size).astype("float32")
self.inputs = {'Input': input_, 'Filter': filter_}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
'groups': self.groups,
'dilations': self.dilations,
'use_cudnn': self.use_cudnn,
'is_test': self.is_test,
'use_mkldnn': self.use_mkldnn,
'data_format': self.data_format
}
if self.output_size is not None:
self.attrs['output_size'] = self.output_size
output = conv2dtranspose_forward_naive(input_, filter_,
self.attrs).astype('float32')
self.outputs = {'Output': output}
def test_check_output(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-5)
else:
self.check_output()
def test_check_grad_no_input(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place, ['Filter'],
'Output',
max_relative_error=0.02,
no_grad_set=set(['Input']))
else:
self.check_grad(
['Filter'],
'Output',
max_relative_error=0.02,
no_grad_set=set(['Input']))
def test_check_grad_no_filter(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place, ['Input'],
'Output',
max_relative_error=0.02,
no_grad_set=set(['Filter']))
else:
self.check_grad(
['Input'],
'Output',
max_relative_error=0.02,
no_grad_set=set(['Filter']))
def test_check_grad(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place,
set(['Input', 'Filter']),
'Output',
max_relative_error=0.02)
else:
self.check_grad(
set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
def init_test_case(self):
self.pad = [0, 0]
self.stride = [1, 1]
self.dilations = [1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
def init_op_type(self):
self.op_type = "conv2d_transpose"
class TestWithPad(TestConv2dTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.dilations = [1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
class TestWithGroups(TestConv2dTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.dilations = [1, 1]
self.groups = 2
self.input_size = [2, 4, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 3, 3, 3]
class TestWithStride(TestConv2dTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [2, 2]
self.dilations = [1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
class TestWithDilation(TestConv2dTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.groups = 1
self.dilations = [2, 2]
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
class TestWithEvenUpsample(TestConv2dTransposeOp):
def init_test_case(self):
self.pad = [2, 2]
self.stride = [2, 2]
self.groups = 1
self.dilations = [1, 1]
self.output_size = [14, 14]
self.input_size = [2, 3, 7, 7] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 5, 5]
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNN(TestConv2dTransposeOp):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithPad(TestWithPad):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.groups = 1
self.dilations = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithStride(TestWithStride):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [2, 2]
self.groups = 1
self.dilations = [1, 1]
self.input_size = [2, 3, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d_transpose"
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithGroups(TestWithGroups):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.dilations = [1, 1]
self.groups = 2
self.input_size = [2, 4, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d_transpose"
class TestDepthwiseConvTranspose(TestConv2dTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [2, 2]
self.dilations = [1, 1]
self.input_size = [2, 8, 16, 16] # NCHW
self.groups = 8
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [self.input_size[1], f_c, 4, 4]
self.op_type = "depthwise_conv2d_transpose"
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv2d_transpose"
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_test_case(self):
# self.pad = [1, 1]
# self.stride = [2, 2]
# self.dilations = [2, 2]
# self.input_size = [2, 3, 5, 5] # NCHW
# f_c = self.input_size[1]
# self.filter_size = [f_c, 6, 3, 3]
#
# def init_op_type(self):
# self.op_type = "conv2d_transpose"
if __name__ == '__main__':
unittest.main()