You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
3.6 KiB
129 lines
3.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def crop(data, offsets, crop_shape):
|
|
def indexOf(shape, index):
|
|
result = []
|
|
for dim in reversed(shape):
|
|
result.append(index % dim)
|
|
index = index / dim
|
|
return result[::-1]
|
|
|
|
result = []
|
|
for i, value in enumerate(data.flatten()):
|
|
index = indexOf(data.shape, i)
|
|
selected = True
|
|
if len(index) == len(offsets):
|
|
for j, offset in enumerate(offsets):
|
|
selected = selected and index[j] >= offset and index[
|
|
j] < crop_shape[j] + offset
|
|
if selected:
|
|
result.append(value)
|
|
return np.array(result).reshape(crop_shape)
|
|
|
|
|
|
class TestCropOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "crop"
|
|
self.crop_by_input = False
|
|
self.offset_by_input = False
|
|
self.attrs = {}
|
|
self.initTestCase()
|
|
if self.crop_by_input:
|
|
self.inputs = {
|
|
'X': np.random.random(self.x_shape).astype("float32"),
|
|
'Y': np.random.random(self.crop_shape).astype("float32")
|
|
}
|
|
else:
|
|
self.attrs['shape'] = self.crop_shape
|
|
self.inputs = {
|
|
'X': np.random.random(self.x_shape).astype("float32"),
|
|
}
|
|
if self.offset_by_input:
|
|
self.inputs['Offsets'] = np.array(self.offsets).astype('int32')
|
|
else:
|
|
self.attrs['offsets'] = self.offsets
|
|
self.outputs = {
|
|
'Out': crop(self.inputs['X'], self.offsets, self.crop_shape)
|
|
}
|
|
|
|
def initTestCase(self):
|
|
self.x_shape = (8, 8)
|
|
self.crop_shape = (2, 2)
|
|
self.offsets = [1, 2]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestCase1(TestCropOp):
|
|
def initTestCase(self):
|
|
self.x_shape = (16, 8, 32)
|
|
self.crop_shape = [2, 2, 3]
|
|
self.offsets = [1, 5, 3]
|
|
|
|
|
|
class TestCase2(TestCropOp):
|
|
def initTestCase(self):
|
|
self.x_shape = (4, 8)
|
|
self.crop_shape = [4, 8]
|
|
self.offsets = [0, 0]
|
|
|
|
|
|
class TestCase3(TestCropOp):
|
|
def initTestCase(self):
|
|
self.x_shape = (4, 8, 16)
|
|
self.crop_shape = [2, 2, 3]
|
|
self.offsets = [1, 5, 3]
|
|
self.crop_by_input = True
|
|
|
|
|
|
class TestCase4(TestCropOp):
|
|
def initTestCase(self):
|
|
self.x_shape = (4, 4)
|
|
self.crop_shape = [4, 4]
|
|
self.offsets = [0, 0]
|
|
self.crop_by_input = True
|
|
|
|
|
|
class TestCase5(TestCropOp):
|
|
def initTestCase(self):
|
|
self.x_shape = (3, 4, 5)
|
|
self.crop_shape = [2, 2, 3]
|
|
self.offsets = [1, 0, 2]
|
|
self.offset_by_input = True
|
|
|
|
|
|
class TestCase6(TestCropOp):
|
|
def initTestCase(self):
|
|
self.x_shape = (10, 9, 14)
|
|
self.crop_shape = [3, 3, 5]
|
|
self.offsets = [3, 5, 4]
|
|
self.crop_by_input = True
|
|
self.offset_by_input = True
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|