You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.8 KiB
83 lines
2.8 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from op_test import OpTest
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
|
|
|
|
class CrossEntropy2OpTestBase(OpTest):
|
|
def initParameters(self):
|
|
return [32, 64], 'float32', -100
|
|
|
|
def calc_output(self, logits, label, ignore_index):
|
|
ret = np.zeros(shape=label.shape, dtype=logits.dtype)
|
|
match_x = np.zeros(shape=label.shape, dtype=logits.dtype)
|
|
for idx in six.moves.range(label.shape[0]):
|
|
if label[idx] == ignore_index:
|
|
continue
|
|
match_x[idx] = logits[idx][label[idx]]
|
|
ret[idx] = -np.log(match_x[idx])
|
|
return ret, match_x
|
|
|
|
def setUp(self):
|
|
self.shape, self.dtype, self.ignore_index = self.initParameters()
|
|
self.op_type = 'cross_entropy2'
|
|
feature_size = int(self.shape[-1])
|
|
batch_size = int(np.prod(self.shape) / feature_size)
|
|
logits = (np.random.random(size=self.shape) + 1).astype(self.dtype)
|
|
label = np.random.random_integers(
|
|
low=0, high=feature_size - 1,
|
|
size=self.shape[0:-1] + [1]).astype('int64')
|
|
outputs, match_x = self.calc_output(
|
|
np.reshape(logits, [batch_size, feature_size]),
|
|
np.reshape(label, [batch_size, 1]), self.ignore_index)
|
|
self.inputs = {'X': logits, 'Label': label}
|
|
self.outputs = {
|
|
'Y': np.reshape(outputs, label.shape),
|
|
'MatchX': np.reshape(match_x, label.shape),
|
|
'XShape': np.zeros(
|
|
shape=logits.shape, dtype=logits.dtype)
|
|
}
|
|
self.attrs = {'ignore_index': self.ignore_index}
|
|
|
|
def test_check_output(self):
|
|
self.check_output(no_check_set=['XShape'])
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(
|
|
inputs_to_check=['X'],
|
|
output_names=['Y'],
|
|
no_grad_set=['XShape', 'MatchX', 'Label'])
|
|
|
|
|
|
class CrossEntropy2OpTest2(CrossEntropy2OpTestBase):
|
|
def initParameters(self):
|
|
return [32, 64], 'float64', 3
|
|
|
|
|
|
class CrossEntropy2OpTest3(CrossEntropy2OpTestBase):
|
|
def initParameters(self):
|
|
return [4, 8, 16, 32], 'float32', -100
|
|
|
|
|
|
class CrossEntropy2OpTest4(CrossEntropy2OpTestBase):
|
|
def initParameters(self):
|
|
return [4, 8, 16, 32], 'float32', 3
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|