You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
6.6 KiB
177 lines
6.6 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
import time
|
|
import six
|
|
import unittest
|
|
|
|
EPOCH_NUM = 20
|
|
BATCH_SIZE = 32
|
|
BATCH_NUM = 20
|
|
CLASS_NUM = 10
|
|
|
|
|
|
def random_reader():
|
|
np.random.seed(1)
|
|
for i in range(BATCH_SIZE * BATCH_NUM):
|
|
image = np.random.random([784])
|
|
label = np.random.random_integers(low=0, high=CLASS_NUM - 1)
|
|
yield image, label
|
|
|
|
|
|
def simple_fc_net(places, use_legacy_py_reader, use_double_buffer):
|
|
startup_prog = fluid.Program()
|
|
main_prog = fluid.Program()
|
|
startup_prog.random_seed = 1
|
|
main_prog.random_seed = 1
|
|
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main_prog, startup_prog):
|
|
image = fluid.layers.data(
|
|
name='image', shape=[784], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
py_reader = fluid.io.PyReader(
|
|
feed_list=[image, label],
|
|
capacity=4,
|
|
iterable=not use_legacy_py_reader,
|
|
use_double_buffer=use_double_buffer)
|
|
hidden = image
|
|
for hidden_size in [10, 20, 30]:
|
|
hidden = fluid.layers.fc(
|
|
hidden,
|
|
size=hidden_size,
|
|
act='tanh',
|
|
bias_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=1.0)))
|
|
|
|
predict_label = fluid.layers.fc(hidden,
|
|
size=CLASS_NUM,
|
|
act='softmax')
|
|
loss = fluid.layers.mean(
|
|
fluid.layers.cross_entropy(
|
|
input=predict_label, label=label))
|
|
|
|
optimizer = fluid.optimizer.Adam()
|
|
optimizer.minimize(loss)
|
|
return startup_prog, main_prog, py_reader, loss
|
|
|
|
|
|
class TestBase(unittest.TestCase):
|
|
def run_main(self, use_legacy_py_reader, with_data_parallel, places,
|
|
use_double_buffer):
|
|
scope = fluid.Scope()
|
|
with fluid.scope_guard(scope):
|
|
startup_prog, main_prog, py_reader, loss = simple_fc_net(
|
|
places, use_legacy_py_reader, use_double_buffer)
|
|
|
|
reader = paddle.batch(random_reader, batch_size=BATCH_SIZE)
|
|
|
|
ps = places if use_double_buffer else fluid.cpu_places(len(places))
|
|
|
|
py_reader.decorate_sample_list_generator(
|
|
reader, places=ps if py_reader.iterable else None)
|
|
|
|
exe = fluid.Executor(place=places[0])
|
|
exe.run(startup_prog)
|
|
|
|
prog = fluid.CompiledProgram(main_prog)
|
|
if with_data_parallel:
|
|
prog = prog.with_data_parallel(
|
|
loss_name=loss.name, places=places)
|
|
|
|
step = 0
|
|
step_list = []
|
|
loss_list = []
|
|
start_t = time.time()
|
|
if not py_reader.iterable:
|
|
for _ in six.moves.range(EPOCH_NUM):
|
|
step = 0
|
|
py_reader.start()
|
|
while True:
|
|
try:
|
|
L, = exe.run(program=prog,
|
|
fetch_list=[loss],
|
|
use_program_cache=True)
|
|
loss_list.append(np.mean(L))
|
|
step += 1
|
|
except fluid.core.EOFException:
|
|
py_reader.reset()
|
|
break
|
|
step_list.append(step)
|
|
else:
|
|
for _ in six.moves.range(EPOCH_NUM):
|
|
step = 0
|
|
for d in py_reader():
|
|
assert len(d) == len(places)
|
|
for i, item in enumerate(d):
|
|
image = item['image']
|
|
label = item['label']
|
|
assert image.shape() == [BATCH_SIZE, 784]
|
|
assert label.shape() == [BATCH_SIZE, 1]
|
|
assert image._place()._equals(ps[i])
|
|
assert label._place()._equals(ps[i])
|
|
L, = exe.run(program=prog,
|
|
feed=d,
|
|
fetch_list=[loss],
|
|
use_program_cache=True)
|
|
loss_list.append(np.mean(L))
|
|
step += 1
|
|
step_list.append(step)
|
|
end_t = time.time()
|
|
ret = {
|
|
"time": end_t - start_t,
|
|
"step": step_list,
|
|
"loss": np.array(loss_list)
|
|
}
|
|
return ret
|
|
|
|
def prepare_places(self, with_data_parallel, with_cpu=True, with_gpu=True):
|
|
places = []
|
|
if with_cpu:
|
|
places.append([fluid.CPUPlace()])
|
|
if with_data_parallel:
|
|
places.append([fluid.CPUPlace()] * 2)
|
|
|
|
if with_gpu and fluid.core.is_compiled_with_cuda():
|
|
tmp = fluid.cuda_places()
|
|
assert len(tmp) > 0, "no gpu detected"
|
|
if with_data_parallel:
|
|
places.append(tmp)
|
|
places.append([tmp[0]])
|
|
return places
|
|
|
|
def test_main(self):
|
|
for with_data_parallel in [True, False]:
|
|
for p in self.prepare_places(with_data_parallel):
|
|
for use_double_buffer in [False, True]:
|
|
results = []
|
|
for use_legacy_py_reader in [False, True]:
|
|
ret = self.run_main(
|
|
use_legacy_py_reader=use_legacy_py_reader,
|
|
with_data_parallel=with_data_parallel,
|
|
places=p,
|
|
use_double_buffer=use_double_buffer)
|
|
results.append(ret)
|
|
if not use_double_buffer:
|
|
diff = np.max(
|
|
np.abs(results[0]['loss'] - results[1]['loss']))
|
|
self.assertLess(diff, 1e-3)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|