You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
6.2 KiB
204 lines
6.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import time
|
|
import math
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
from paddle.fluid import core
|
|
import unittest
|
|
from multiprocessing import Process
|
|
import os
|
|
import signal
|
|
import six
|
|
import collections
|
|
|
|
SEED = 1
|
|
DTYPE = "float32"
|
|
paddle.dataset.mnist.fetch()
|
|
|
|
|
|
# random seed must set before configuring the network.
|
|
# fluid.default_startup_program().random_seed = SEED
|
|
def cnn_model(data):
|
|
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
|
input=data,
|
|
filter_size=5,
|
|
num_filters=20,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
|
input=conv_pool_1,
|
|
filter_size=5,
|
|
num_filters=50,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu")
|
|
|
|
# TODO(dzhwinter) : refine the initializer and random seed settting
|
|
SIZE = 10
|
|
input_shape = conv_pool_2.shape
|
|
param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1)
|
|
] + [SIZE]
|
|
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
|
|
|
predict = fluid.layers.fc(
|
|
input=conv_pool_2,
|
|
size=SIZE,
|
|
act="softmax",
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.NormalInitializer(
|
|
loc=0.0, scale=scale)))
|
|
return predict
|
|
|
|
|
|
def get_model(batch_size):
|
|
# Input data
|
|
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
# Train program
|
|
predict = cnn_model(images)
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
# Evaluator
|
|
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size_tensor)
|
|
|
|
inference_program = fluid.default_main_program().clone()
|
|
# Optimization
|
|
opt = fluid.optimizer.AdamOptimizer(
|
|
learning_rate=0.001, beta1=0.9, beta2=0.999)
|
|
|
|
# Reader
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.train(), batch_size=batch_size)
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.mnist.test(), batch_size=batch_size)
|
|
opt.minimize(avg_cost)
|
|
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
|
|
|
|
|
|
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
|
|
t = fluid.DistributeTranspiler()
|
|
t.transpile(
|
|
trainer_id=trainer_id,
|
|
program=main_program,
|
|
pservers=pserver_endpoints,
|
|
trainers=trainers)
|
|
return t
|
|
|
|
|
|
from paddle.fluid.transpiler.details import op_to_code
|
|
|
|
|
|
def operator_equal(a, b):
|
|
if op_to_code(a) != op_to_code(b):
|
|
raise ValueError("In operator_equal not equal\n")
|
|
|
|
for k, v in six.iteritems(a.__dict__):
|
|
if isinstance(v, fluid.framework.Program) or \
|
|
isinstance(v, fluid.framework.Block):
|
|
continue
|
|
|
|
elif isinstance(v, core.OpDesc):
|
|
continue
|
|
|
|
elif isinstance(v, collections.OrderedDict):
|
|
v0 = sorted(list(six.iteritems(v)), key=lambda x: x[0])
|
|
v1 = sorted(list(six.iteritems(b.__dict__[k])), key=lambda x: x[0])
|
|
|
|
if v0 != v1:
|
|
raise ValueError("In operator_equal not equal:{0}\n".format(k))
|
|
|
|
elif (v != b.__dict__[k]):
|
|
raise ValueError("In operator_equal not equal:{0}\n".format(k))
|
|
|
|
return True
|
|
|
|
|
|
def block_equal(a, b):
|
|
for k, v in six.iteritems(a.__dict__):
|
|
if isinstance(v, core.ProgramDesc) or isinstance(
|
|
v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
|
|
continue
|
|
|
|
elif k == "ops":
|
|
assert (len(a.ops) == len(b.ops))
|
|
for i in range(0, len(a.ops)):
|
|
if not operator_equal(a.ops[i], b.ops[i]):
|
|
raise ValueError("In block_equal not equal:{0}\n".format(k))
|
|
|
|
elif isinstance(v, collections.OrderedDict):
|
|
for key, value in six.iteritems(v):
|
|
if str(value) != str(b.__dict__[k][key]):
|
|
raise ValueError("In block_equal not equal:{0}\n".format(k))
|
|
|
|
elif (v != b.__dict__[k]):
|
|
raise ValueError("In block_equal not equal:{0}\n".format(k))
|
|
|
|
return True
|
|
|
|
|
|
def program_equal(a, b):
|
|
for k, v in six.iteritems(a.__dict__):
|
|
if isinstance(v, core.ProgramDesc):
|
|
continue
|
|
|
|
elif k == 'blocks':
|
|
for i in range(0, len(a.blocks)):
|
|
if not block_equal(a.blocks[i], b.blocks[i]):
|
|
raise ValueError("In operator_equal not equal:{0}\n".format(
|
|
k))
|
|
return False
|
|
assert (len(a.blocks) == len(b.blocks))
|
|
|
|
elif (v != b.__dict__[k]):
|
|
raise ValueError("In program_equal not equal:{0}\n".format(k))
|
|
|
|
return True
|
|
|
|
|
|
class TestDistMnist(unittest.TestCase):
|
|
def test_desc_clone(self):
|
|
get_model(batch_size=20)
|
|
|
|
pserver_endpoints = "127.0.0.1:9123"
|
|
trainers = 1
|
|
current_endpoint = "127.0.0.1:9123"
|
|
t = get_transpiler(0,
|
|
fluid.default_main_program(), pserver_endpoints,
|
|
trainers)
|
|
|
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
|
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
|
|
main = pserver_prog.clone()
|
|
startup = startup_prog.clone()
|
|
|
|
self.assertTrue(program_equal(main, pserver_prog))
|
|
self.assertTrue(program_equal(startup, startup_prog))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|