You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_desc_clone.py

204 lines
6.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import time
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
import six
import collections
SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1)
] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
return predict
def get_model(batch_size):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = cnn_model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
# Optimization
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=batch_size)
opt.minimize(avg_cost)
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
return t
from paddle.fluid.transpiler.details import op_to_code
def operator_equal(a, b):
if op_to_code(a) != op_to_code(b):
raise ValueError("In operator_equal not equal\n")
for k, v in six.iteritems(a.__dict__):
if isinstance(v, fluid.framework.Program) or \
isinstance(v, fluid.framework.Block):
continue
elif isinstance(v, core.OpDesc):
continue
elif isinstance(v, collections.OrderedDict):
v0 = sorted(list(six.iteritems(v)), key=lambda x: x[0])
v1 = sorted(list(six.iteritems(b.__dict__[k])), key=lambda x: x[0])
if v0 != v1:
raise ValueError("In operator_equal not equal:{0}\n".format(k))
elif (v != b.__dict__[k]):
raise ValueError("In operator_equal not equal:{0}\n".format(k))
return True
def block_equal(a, b):
for k, v in six.iteritems(a.__dict__):
if isinstance(v, core.ProgramDesc) or isinstance(
v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
continue
elif k == "ops":
assert (len(a.ops) == len(b.ops))
for i in range(0, len(a.ops)):
if not operator_equal(a.ops[i], b.ops[i]):
raise ValueError("In block_equal not equal:{0}\n".format(k))
elif isinstance(v, collections.OrderedDict):
for key, value in six.iteritems(v):
if str(value) != str(b.__dict__[k][key]):
raise ValueError("In block_equal not equal:{0}\n".format(k))
elif (v != b.__dict__[k]):
raise ValueError("In block_equal not equal:{0}\n".format(k))
return True
def program_equal(a, b):
for k, v in six.iteritems(a.__dict__):
if isinstance(v, core.ProgramDesc):
continue
elif k == 'blocks':
for i in range(0, len(a.blocks)):
if not block_equal(a.blocks[i], b.blocks[i]):
raise ValueError("In operator_equal not equal:{0}\n".format(
k))
return False
assert (len(a.blocks) == len(b.blocks))
elif (v != b.__dict__[k]):
raise ValueError("In program_equal not equal:{0}\n".format(k))
return True
class TestDistMnist(unittest.TestCase):
def test_desc_clone(self):
get_model(batch_size=20)
pserver_endpoints = "127.0.0.1:9123"
trainers = 1
current_endpoint = "127.0.0.1:9123"
t = get_transpiler(0,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
main = pserver_prog.clone()
startup = startup_prog.clone()
self.assertTrue(program_equal(main, pserver_prog))
self.assertTrue(program_equal(startup, startup_prog))
if __name__ == "__main__":
unittest.main()