You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
8.2 KiB
248 lines
8.2 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.core as core
|
|
import gradient_checker
|
|
|
|
from decorator_helper import prog_scope
|
|
|
|
|
|
class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.005
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape, False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_mul(x, y)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.005
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape[:-1], False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_mul(x, y, axis=0)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.005
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape, False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_add(x, y)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.005
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape[:-1], False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_add(x, y, axis=0)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.005
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape, False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_sub(x, y)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.005
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape[:-1], False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_sub(x, y, axis=0)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.0001
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape, False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_div(x, y, axis=0)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr[np.abs(y_arr) < 0.005] = 0.02
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
|
|
@prog_scope()
|
|
def func(self, place):
|
|
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
|
shape = [2, 3, 7, 9]
|
|
eps = 0.0001
|
|
dtype = np.float64
|
|
|
|
x = layers.data('x', shape, False, dtype)
|
|
y = layers.data('y', shape[1:-1], False, dtype)
|
|
x.persistable = True
|
|
y.persistable = True
|
|
out = layers.elementwise_div(x, y, axis=1)
|
|
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
|
y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
|
|
y_arr[np.abs(y_arr) < 0.005] = 0.02
|
|
|
|
gradient_checker.double_grad_check(
|
|
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)
|
|
|
|
def test_grad(self):
|
|
places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(fluid.CUDAPlace(0))
|
|
for p in places:
|
|
self.func(p)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|