You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
5.8 KiB
197 lines
5.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestExpandOpRank1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.random(12).astype("float32")}
|
|
self.attrs = {'expand_times': [2]}
|
|
output = np.tile(self.inputs['X'], 2)
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank1_tensor_attr(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {
|
|
'X': np.random.random(12).astype("float32"),
|
|
'expand_times_tensor': [('x1', np.ones((1)).astype('int32') * 2)]
|
|
}
|
|
self.attrs = {}
|
|
output = np.tile(self.inputs['X'], 2)
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out', no_grad_set=set('x1'))
|
|
|
|
|
|
class TestExpandOpRank2_Corner(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.random((12, 14)).astype("float32")}
|
|
self.attrs = {'expand_times': [1, 1]}
|
|
output = np.tile(self.inputs['X'], (1, 1))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank2_Corner_tensor_attr(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {
|
|
'X': np.random.random((12, 14)).astype("float32"),
|
|
'expand_times_tensor': [('x1', np.ones((1)).astype('int32')),
|
|
('x2', np.ones((1)).astype('int32'))]
|
|
}
|
|
self.attrs = {}
|
|
output = np.tile(self.inputs['X'], (1, 1))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.random((12, 14)).astype("float32")}
|
|
self.attrs = {'expand_times': [2, 3]}
|
|
output = np.tile(self.inputs['X'], (2, 3))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank2_attr_tensor(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {
|
|
'X': np.random.random((12, 14)).astype("float32"),
|
|
'expand_times_tensor': [('x1', np.ones((1)).astype('int32') * 2),
|
|
('x2', np.ones((1)).astype('int32') * 3)]
|
|
}
|
|
self.attrs = {}
|
|
output = np.tile(self.inputs['X'], (2, 3))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank3_Corner(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.random((2, 4, 5)).astype("float32")}
|
|
self.attrs = {'expand_times': [1, 1, 1]}
|
|
output = np.tile(self.inputs['X'], (1, 1, 1))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank3(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.random((2, 4, 5)).astype("float32")}
|
|
self.attrs = {'expand_times': [2, 1, 4]}
|
|
output = np.tile(self.inputs['X'], (2, 1, 4))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpRank4(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.random((2, 4, 5, 7)).astype("float32")}
|
|
self.attrs = {'expand_times': [3, 2, 1, 2]}
|
|
output = np.tile(self.inputs['X'], (3, 2, 1, 2))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
class TestExpandOpInteger(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {
|
|
'X': np.random.randint(
|
|
10, size=(2, 4, 5)).astype("int32")
|
|
}
|
|
self.attrs = {'expand_times': [2, 1, 4]}
|
|
output = np.tile(self.inputs['X'], (2, 1, 4))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestExpandOpBoolean(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "expand"
|
|
self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
|
|
self.attrs = {'expand_times': [2, 1, 4]}
|
|
output = np.tile(self.inputs['X'], (2, 1, 4))
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|