You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_gradient_clip.py

163 lines
5.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
import six
from fake_reader import fake_imdb_reader
def bow_net(data,
label,
dict_dim,
emb_dim=128,
hid_dim=128,
hid_dim2=96,
class_dim=2):
"""
BOW net
This model is from https://github.com/PaddlePaddle/models:
fluid/PaddleNLP/text_classification/nets.py
"""
emb = fluid.layers.embedding(
input=data, is_sparse=True, size=[dict_dim, emb_dim])
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
bow_tanh = fluid.layers.tanh(bow)
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return avg_cost
class TestGradientClip(unittest.TestCase):
def setUp(self):
self.word_dict_len = 5147
self.BATCH_SIZE = 2
reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
def get_places(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
return places
def check_operators(self, place):
CLIP = 1
prog = fluid.framework.Program()
startup_program = fluid.framework.Program()
with fluid.program_guard(
main_program=prog, startup_program=startup_program):
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
prog_clip = prog.clone()
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
p_g = fluid.backward.append_backward(loss=avg_cost)
p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)
with fluid.program_guard(
main_program=prog_clip, startup_program=startup_program):
fluid.clip.set_gradient_clip(
fluid.clip.GradientClipByGlobalNorm(clip_norm=CLIP))
p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
grad_list = [elem[1] for elem in p_g]
grad_clip_list = [elem[1] for elem in p_g_clip]
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=128)
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
exe.run(startup_program)
count = 0
for data in train_reader():
count += 1
if count > 5:
break
out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
out_clip = exe.run(prog_clip,
feed=feeder.feed(data),
fetch_list=grad_clip_list)
global_norm = 0
for v in out:
global_norm += np.sum(np.power(v, 2))
global_norm = np.sqrt(global_norm)
global_norm_clip = 0
for v in out_clip:
global_norm_clip += np.sum(np.power(v, 2))
global_norm_clip = np.sqrt(global_norm_clip)
assert np.isclose(
a=global_norm_clip, b=np.minimum(global_norm, CLIP), rtol=5e-3)
def check_sparse_gradient_clip(self, place):
prog = fluid.framework.Program()
startup_program = fluid.framework.Program()
with fluid.program_guard(
main_program=prog, startup_program=startup_program):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost = bow_net(data, label, self.word_dict_len)
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0))
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(cost)
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
exe.run(startup_program)
data = next(self.train_data())
val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
self.assertEqual((1, ), val.shape)
print(val)
self.assertFalse(np.isnan(val))
def test_operators(self):
self.check_operators(core.CPUPlace())
def test_sparse_gradient_clip(self):
for place in self.get_places():
self.check_sparse_gradient_clip(place)
if __name__ == '__main__':
unittest.main()