You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
5.8 KiB
163 lines
5.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
import six
|
|
from fake_reader import fake_imdb_reader
|
|
|
|
|
|
def bow_net(data,
|
|
label,
|
|
dict_dim,
|
|
emb_dim=128,
|
|
hid_dim=128,
|
|
hid_dim2=96,
|
|
class_dim=2):
|
|
"""
|
|
BOW net
|
|
This model is from https://github.com/PaddlePaddle/models:
|
|
fluid/PaddleNLP/text_classification/nets.py
|
|
"""
|
|
emb = fluid.layers.embedding(
|
|
input=data, is_sparse=True, size=[dict_dim, emb_dim])
|
|
bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
|
|
bow_tanh = fluid.layers.tanh(bow)
|
|
fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
|
|
fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
|
|
prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
return avg_cost
|
|
|
|
|
|
class TestGradientClip(unittest.TestCase):
|
|
def setUp(self):
|
|
self.word_dict_len = 5147
|
|
self.BATCH_SIZE = 2
|
|
reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
|
|
self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
|
|
|
|
def get_places(self):
|
|
places = [core.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
places.append(core.CUDAPlace(0))
|
|
return places
|
|
|
|
def check_operators(self, place):
|
|
CLIP = 1
|
|
|
|
prog = fluid.framework.Program()
|
|
startup_program = fluid.framework.Program()
|
|
with fluid.program_guard(
|
|
main_program=prog, startup_program=startup_program):
|
|
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
|
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
|
|
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
|
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
prog_clip = prog.clone()
|
|
avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
|
|
|
|
p_g = fluid.backward.append_backward(loss=avg_cost)
|
|
p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)
|
|
|
|
with fluid.program_guard(
|
|
main_program=prog_clip, startup_program=startup_program):
|
|
fluid.clip.set_gradient_clip(
|
|
fluid.clip.GradientClipByGlobalNorm(clip_norm=CLIP))
|
|
p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
|
|
|
|
grad_list = [elem[1] for elem in p_g]
|
|
grad_clip_list = [elem[1] for elem in p_g_clip]
|
|
|
|
train_reader = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.mnist.train(), buf_size=8192),
|
|
batch_size=128)
|
|
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
|
|
exe.run(startup_program)
|
|
|
|
count = 0
|
|
for data in train_reader():
|
|
count += 1
|
|
if count > 5:
|
|
break
|
|
out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
|
|
out_clip = exe.run(prog_clip,
|
|
feed=feeder.feed(data),
|
|
fetch_list=grad_clip_list)
|
|
global_norm = 0
|
|
for v in out:
|
|
global_norm += np.sum(np.power(v, 2))
|
|
global_norm = np.sqrt(global_norm)
|
|
|
|
global_norm_clip = 0
|
|
for v in out_clip:
|
|
global_norm_clip += np.sum(np.power(v, 2))
|
|
global_norm_clip = np.sqrt(global_norm_clip)
|
|
|
|
assert np.isclose(
|
|
a=global_norm_clip, b=np.minimum(global_norm, CLIP), rtol=5e-3)
|
|
|
|
def check_sparse_gradient_clip(self, place):
|
|
prog = fluid.framework.Program()
|
|
startup_program = fluid.framework.Program()
|
|
with fluid.program_guard(
|
|
main_program=prog, startup_program=startup_program):
|
|
data = fluid.layers.data(
|
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
cost = bow_net(data, label, self.word_dict_len)
|
|
|
|
fluid.clip.set_gradient_clip(
|
|
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0))
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
|
|
sgd_optimizer.minimize(cost)
|
|
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
|
exe.run(startup_program)
|
|
|
|
data = next(self.train_data())
|
|
val = exe.run(prog, feed=feeder.feed(data), fetch_list=[cost])[0]
|
|
self.assertEqual((1, ), val.shape)
|
|
print(val)
|
|
self.assertFalse(np.isnan(val))
|
|
|
|
def test_operators(self):
|
|
self.check_operators(core.CPUPlace())
|
|
|
|
def test_sparse_gradient_clip(self):
|
|
for place in self.get_places():
|
|
self.check_sparse_gradient_clip(place)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|