You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_deepcf.py

294 lines
11 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import random
import os
import sys
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
from paddle.fluid.dygraph.base import to_variable
# Can use Amusic dataset as the DeepCF describes.
DATA_PATH = os.environ.get('DATA_PATH', '')
BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 128))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
class DMF(fluid.Layer):
def __init__(self, name_scope):
super(DMF, self).__init__(name_scope)
self._user_latent = fluid.FC(self.full_name(), 256)
self._item_latent = fluid.FC(self.full_name(), 256)
self._user_layers = []
self._item_layers = []
self._hid_sizes = [128, 64]
for i in range(len(self._hid_sizes)):
self._user_layers.append(
self.add_sublayer(
'user_layer_%d' % i,
fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
self._item_layers.append(
self.add_sublayer(
'item_layer_%d' % i,
fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
def forward(self, users, items):
users = self._user_latent(users)
items = self._item_latent(items)
for ul, il in zip(self._user_layers, self._item_layers):
users = ul(users)
items = il(items)
return fluid.layers.elementwise_mul(users, items)
class MLP(fluid.Layer):
def __init__(self, name_scope):
super(MLP, self).__init__(name_scope)
self._user_latent = fluid.FC(self.full_name(), 256)
self._item_latent = fluid.FC(self.full_name(), 256)
self._match_layers = []
self._hid_sizes = [128, 64]
for i in range(len(self._hid_sizes)):
self._match_layers.append(
self.add_sublayer(
'match_layer_%d' % i,
fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
self._mat
def forward(self, users, items):
users = self._user_latent(users)
items = self._item_latent(items)
match_vec = fluid.layers.concat(
[users, items], axis=len(users.shape) - 1)
for l in self._match_layers:
match_vec = l(match_vec)
return match_vec
class DeepCF(fluid.Layer):
def __init__(self, name_scope, num_users, num_items, matrix):
super(DeepCF, self).__init__(name_scope)
self._num_users = num_users
self._num_items = num_items
self._rating_matrix = self.create_parameter(
fluid.ParamAttr(trainable=False),
matrix.shape,
matrix.dtype,
is_bias=False,
default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
self._rating_matrix.stop_gradient = True
self._mlp = MLP(self.full_name())
self._dmf = DMF(self.full_name())
self._match_fc = fluid.FC(self.full_name(), 1, act='sigmoid')
def forward(self, users, items):
# users_emb = self._user_emb(users)
# items_emb = self._item_emb(items)
users_emb = fluid.layers.gather(self._rating_matrix, users)
items_emb = fluid.layers.gather(
fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
users_emb.stop_gradient = True
items_emb.stop_gradient = True
mlp_predictive = self._mlp(users_emb, items_emb)
dmf_predictive = self._dmf(users_emb, items_emb)
predictive = fluid.layers.concat(
[mlp_predictive, dmf_predictive],
axis=len(mlp_predictive.shape) - 1)
prediction = self._match_fc(predictive)
return prediction
def get_data():
user_ids = []
item_ids = []
labels = []
NUM_USERS = 100
NUM_ITEMS = 1000
matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)
for uid in range(NUM_USERS):
for iid in range(NUM_ITEMS):
label = float(random.randint(1, 6) == 1)
user_ids.append(uid)
item_ids.append(iid)
labels.append(label)
matrix[uid, iid] = label
indices = np.arange(len(user_ids))
np.random.shuffle(indices)
users_np = np.array(user_ids, dtype=np.int32)[indices]
items_np = np.array(item_ids, dtype=np.int32)[indices]
labels_np = np.array(labels, dtype=np.float32)[indices]
return np.expand_dims(users_np, -1), \
np.expand_dims(items_np, -1), \
np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix
def load_data(DATA_PATH):
sys.stderr.write('loading from %s\n' % DATA_PATH)
likes = dict()
num_users = -1
num_items = -1
with open(DATA_PATH, 'r') as f:
for l in f.readlines():
uid, iid, rating = [int(v) for v in l.split('\t')]
num_users = max(num_users, uid + 1)
num_items = max(num_items, iid + 1)
if float(rating) > 0.0:
likes[(uid, iid)] = 1.0
user_ids = []
item_ids = []
labels = []
matrix = np.zeros([num_users, num_items], dtype=np.float32)
for uid, iid in likes.keys():
user_ids.append(uid)
item_ids.append(iid)
labels.append(1.0)
matrix[uid, iid] = 1.0
negative = 0
while negative < 3:
nuid = random.randint(0, num_users - 1)
niid = random.randint(0, num_items - 1)
if (nuid, niid) not in likes:
negative += 1
user_ids.append(nuid)
item_ids.append(niid)
labels.append(0.0)
indices = np.arange(len(user_ids))
np.random.shuffle(indices)
users_np = np.array(user_ids, dtype=np.int32)[indices]
items_np = np.array(item_ids, dtype=np.int32)[indices]
labels_np = np.array(labels, dtype=np.float32)[indices]
return np.expand_dims(users_np, -1), \
np.expand_dims(items_np, -1), \
np.expand_dims(labels_np, -1), num_users, num_items, matrix
class TestDygraphDeepCF(unittest.TestCase):
def test_deefcf(self):
seed = 90
if DATA_PATH:
(users_np, items_np, labels_np, num_users, num_items,
matrix) = load_data(DATA_PATH)
else:
(users_np, items_np, labels_np, num_users, num_items,
matrix) = get_data()
startup = fluid.Program()
startup.random_seed = seed
main = fluid.Program()
main.random_seed = seed
scope = fluid.core.Scope()
with new_program_scope(main=main, startup=startup, scope=scope):
users = fluid.layers.data('users', [1], dtype='int32')
items = fluid.layers.data('items', [1], dtype='int32')
labels = fluid.layers.data('labels', [1], dtype='float32')
deepcf = DeepCF('deepcf', num_users, num_items, matrix)
prediction = deepcf(users, items)
loss = fluid.layers.reduce_sum(
fluid.layers.log_loss(prediction, labels))
adam = fluid.optimizer.AdamOptimizer(0.01)
adam.minimize(loss)
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(startup)
for e in range(NUM_EPOCHES):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
break
static_loss = exe.run(
main,
feed={
users.name: users_np[slice:slice + BATCH_SIZE],
items.name: items_np[slice:slice + BATCH_SIZE],
labels.name: labels_np[slice:slice + BATCH_SIZE]
},
fetch_list=[loss])[0]
sys.stderr.write('static loss %s\n' % static_loss)
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
deepcf = DeepCF('deepcf', num_users, num_items, matrix)
adam = fluid.optimizer.AdamOptimizer(0.01)
for e in range(NUM_EPOCHES):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
break
prediction = deepcf(
to_variable(users_np[slice:slice + BATCH_SIZE]),
to_variable(items_np[slice:slice + BATCH_SIZE]))
loss = fluid.layers.reduce_sum(
fluid.layers.log_loss(prediction,
to_variable(labels_np[
slice:slice + BATCH_SIZE])))
loss.backward()
adam.minimize(loss)
deepcf.clear_gradients()
dy_loss = loss.numpy()
sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
deepcf2 = DeepCF('deepcf', num_users, num_items, matrix)
adam2 = fluid.optimizer.AdamOptimizer(0.01)
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
for e in range(NUM_EPOCHES):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
break
prediction2 = deepcf2(
to_variable(users_np[slice:slice + BATCH_SIZE]),
to_variable(items_np[slice:slice + BATCH_SIZE]))
loss2 = fluid.layers.reduce_sum(
fluid.layers.log_loss(prediction2,
to_variable(labels_np[
slice:slice + BATCH_SIZE])))
loss2.backward(backward_strategy)
adam2.minimize(loss2)
deepcf2.clear_gradients()
dy_loss2 = loss2.numpy()
sys.stderr.write('dynamic loss: %s %s\n' %
(slice, dy_loss2))
self.assertEqual(static_loss, dy_loss)
self.assertEqual(static_loss, dy_loss2)
if __name__ == '__main__':
unittest.main()