You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.3 KiB
170 lines
6.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import sys
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.optimizer import AdamOptimizer
|
|
from test_imperative_base import new_program_scope
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
|
|
def gen_data():
|
|
pass
|
|
|
|
|
|
class GraphConv(fluid.Layer):
|
|
def __init__(self, name_scope, in_features, out_features):
|
|
super(GraphConv, self).__init__(name_scope)
|
|
|
|
self._in_features = in_features
|
|
self._out_features = out_features
|
|
self.weight = self.create_parameter(
|
|
attr=None,
|
|
dtype='float32',
|
|
shape=[self._in_features, self._out_features])
|
|
self.bias = self.create_parameter(
|
|
attr=None, dtype='float32', shape=[self._out_features])
|
|
|
|
def forward(self, features, adj):
|
|
support = fluid.layers.matmul(features, self.weight)
|
|
# TODO(panyx0718): sparse matmul?
|
|
return fluid.layers.matmul(adj, support) + self.bias
|
|
|
|
|
|
class GCN(fluid.Layer):
|
|
def __init__(self, name_scope, num_hidden):
|
|
super(GCN, self).__init__(name_scope)
|
|
self.gc = GraphConv(self.full_name(), num_hidden, 32)
|
|
self.gc2 = GraphConv(self.full_name(), 32, 10)
|
|
|
|
def forward(self, x, adj):
|
|
x = fluid.layers.relu(self.gc(x, adj))
|
|
return self.gc2(x, adj)
|
|
|
|
|
|
class TestDygraphGNN(unittest.TestCase):
|
|
def test_gnn_float32(self):
|
|
seed = 90
|
|
|
|
startup = fluid.Program()
|
|
startup.random_seed = seed
|
|
main = fluid.Program()
|
|
main.random_seed = seed
|
|
|
|
scope = fluid.core.Scope()
|
|
with new_program_scope(main=main, startup=startup, scope=scope):
|
|
features = fluid.layers.data(
|
|
name='features',
|
|
shape=[1, 100, 50],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
# Use selected rows when it's supported.
|
|
adj = fluid.layers.data(
|
|
name='adj',
|
|
shape=[1, 100, 100],
|
|
dtype='float32',
|
|
append_batch_size=False)
|
|
labels = fluid.layers.data(
|
|
name='labels',
|
|
shape=[100, 1],
|
|
dtype='int64',
|
|
append_batch_size=False)
|
|
|
|
model = GCN('test_gcn', 50)
|
|
logits = model(features, adj)
|
|
logits = fluid.layers.reshape(logits, logits.shape[1:])
|
|
# In other example, it's nll with log_softmax. However, paddle's
|
|
# log_loss only supports binary classification now.
|
|
loss = fluid.layers.softmax_with_cross_entropy(logits, labels)
|
|
loss = fluid.layers.reduce_sum(loss)
|
|
|
|
adam = AdamOptimizer(learning_rate=1e-3)
|
|
adam.minimize(loss)
|
|
exe = fluid.Executor(fluid.CPUPlace(
|
|
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
exe.run(startup)
|
|
static_loss = exe.run(feed={
|
|
'features': np.ones(
|
|
[1, 100, 50], dtype=np.float32),
|
|
'adj': np.ones(
|
|
[1, 100, 100], dtype=np.float32),
|
|
'labels': np.ones(
|
|
[100, 1], dtype=np.int64)
|
|
},
|
|
fetch_list=[loss])[0]
|
|
|
|
static_weight = np.array(
|
|
scope.find_var(model.gc.weight.name).get_tensor())
|
|
|
|
with fluid.dygraph.guard():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
features = np.ones([1, 100, 50], dtype=np.float32)
|
|
# Use selected rows when it's supported.
|
|
adj = np.ones([1, 100, 100], dtype=np.float32)
|
|
labels = np.ones([100, 1], dtype=np.int64)
|
|
|
|
model = GCN('test_gcn', 50)
|
|
logits = model(to_variable(features), to_variable(adj))
|
|
logits = fluid.layers.reshape(logits, logits.shape[1:])
|
|
# In other example, it's nll with log_softmax. However, paddle's
|
|
# log_loss only supports binary classification now.
|
|
loss = fluid.layers.softmax_with_cross_entropy(logits,
|
|
to_variable(labels))
|
|
loss = fluid.layers.reduce_sum(loss)
|
|
loss.backward()
|
|
adam = AdamOptimizer(learning_rate=1e-3)
|
|
|
|
adam.minimize(loss)
|
|
model.clear_gradients()
|
|
|
|
with fluid.dygraph.guard():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
features2 = np.ones([1, 100, 50], dtype=np.float32)
|
|
# Use selected rows when it's supported.
|
|
adj2 = np.ones([1, 100, 100], dtype=np.float32)
|
|
labels2 = np.ones([100, 1], dtype=np.int64)
|
|
|
|
model2 = GCN('test_gcn', 50)
|
|
logits2 = model2(to_variable(features2), to_variable(adj2))
|
|
logits2 = fluid.layers.reshape(logits2, logits2.shape[1:])
|
|
# In other example, it's nll with log_softmax. However, paddle's
|
|
# log_loss only supports binary classification now.
|
|
loss2 = fluid.layers.softmax_with_cross_entropy(
|
|
logits2, to_variable(labels2))
|
|
loss2 = fluid.layers.reduce_sum(loss2)
|
|
loss2.backward()
|
|
adam2 = AdamOptimizer(learning_rate=1e-3)
|
|
adam2.minimize(loss2)
|
|
model2.clear_gradients()
|
|
|
|
self.assertEqual(static_loss, loss.numpy())
|
|
self.assertTrue(np.allclose(static_weight, model.gc.weight.numpy()))
|
|
self.assertEqual(static_loss, loss2.numpy())
|
|
self.assertTrue(np.allclose(static_weight, model2.gc.weight.numpy()))
|
|
sys.stderr.write('%s %s\n' % (static_loss, loss.numpy()))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|