You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_reinforceme...

176 lines
6.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import contextlib
import unittest
import numpy as np
import six
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
import paddle.fluid.dygraph.nn as nn
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope
class Policy(fluid.dygraph.Layer):
def __init__(self, name_scope):
super(Policy, self).__init__(name_scope)
self.affine1 = nn.FC(self.full_name(), size=128)
self.affine2 = nn.FC(self.full_name(), size=2)
self.dropout_ratio = 0.6
self.saved_log_probs = []
self.rewards = []
def forward(self, inputs):
x = fluid.layers.reshape(inputs, shape=[-1, 4])
x = self.affine1(x)
x = fluid.layers.dropout(x, self.dropout_ratio)
x = fluid.layers.relu(x)
action_scores = self.affine2(x)
return fluid.layers.softmax(action_scores, axis=1)
class TestImperativeMnist(unittest.TestCase):
def test_mnist_float32(self):
seed = 90
epoch_num = 1
state = np.random.normal(size=4).astype("float32")
state_list = state.tolist()
reward = np.random.random(size=[1, 1]).astype("float32")
reward_list = reward.tolist()
action_list = [1]
action = np.array(action_list).astype("float32")
mask_list = [[0, 1]]
mask = np.array(mask_list).astype("float32")
with fluid.dygraph.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
policy = Policy("PolicyModel")
dy_state = fluid.dygraph.base.to_variable(state)
dy_state.stop_gradient = True
loss_probs = policy(dy_state)
dy_mask = fluid.dygraph.base.to_variable(mask)
dy_mask.stop_gradient = True
loss_probs = fluid.layers.log(loss_probs)
loss_probs = fluid.layers.elementwise_mul(loss_probs, dy_mask)
loss_probs = fluid.layers.reduce_sum(loss_probs, dim=-1)
dy_reward = fluid.dygraph.base.to_variable(reward)
dy_reward.stop_gradient = True
loss_probs = fluid.layers.elementwise_mul(dy_reward, loss_probs)
loss = fluid.layers.reduce_sum(loss_probs)
sgd = SGDOptimizer(learning_rate=1e-3)
dy_param_init_value = {}
dy_out = loss.numpy()
for param in policy.parameters():
dy_param_init_value[param.name] = param.numpy()
loss.backward()
sgd.minimize(loss)
policy.clear_gradients()
dy_param_value = {}
for param in policy.parameters():
dy_param_value[param.name] = param.numpy()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
policy = Policy("PolicyModel")
st_sgd = SGDOptimizer(learning_rate=1e-3)
st_state = fluid.layers.data(
name='st_state', shape=[4], dtype='float32')
st_reward = fluid.layers.data(
name='st_reward', shape=[1], dtype='float32')
st_mask = fluid.layers.data(
name='st_mask', shape=[2], dtype='float32')
st_loss_probs = policy(st_state)
st_loss_probs = fluid.layers.log(st_loss_probs)
st_loss_probs = fluid.layers.elementwise_mul(st_loss_probs, st_mask)
st_loss_probs = fluid.layers.reduce_sum(st_loss_probs, dim=-1)
st_loss_probs = fluid.layers.elementwise_mul(st_reward,
st_loss_probs)
st_loss = fluid.layers.reduce_sum(st_loss_probs)
st_sgd.minimize(st_loss)
# initialize params and fetch them
static_param_init_value = {}
static_param_name_list = []
for param in policy.parameters():
static_param_name_list.append(param.name)
out = exe.run(fluid.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init_value[static_param_name_list[i]] = out[i]
fetch_list = [st_loss.name]
fetch_list.extend(static_param_name_list)
out = exe.run(
fluid.default_main_program(),
feed={"st_state": state,
"st_reward": reward,
"st_mask": mask},
fetch_list=fetch_list)
static_param_value = {}
static_out = out[0]
for i in range(1, len(out)):
static_param_value[static_param_name_list[i - 1]] = out[i]
#self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
for key, value in six.iteritems(static_param_init_value):
self.assertTrue(np.equal(value, dy_param_init_value[key]).all())
self.assertTrue(np.equal(static_out, dy_out).all())
for key, value in six.iteritems(static_param_value):
self.assertTrue(np.equal(value, dy_param_value[key]).all())
if __name__ == '__main__':
unittest.main()