You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_npair_loss_op.py

102 lines
3.6 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
def npairloss(anchor, positive, labels, l2_reg=0.002):
def softmax_cross_entropy_with_logits(logits, labels):
logits = np.exp(logits)
logits = logits / np.sum(logits, axis=1).reshape(-1, 1)
return np.mean(
-np.sum(labels * np.log(logits), axis=1), dtype=np.float32)
batch_size = labels.shape[0]
labels = np.reshape(labels, (batch_size, 1))
labels = np.equal(labels, labels.transpose()).astype(float)
labels = labels / np.sum(labels, axis=1, keepdims=True)
l2loss = np.mean(np.sum(np.power(anchor, 2), 1)) + np.mean(
np.sum(np.power(positive, 2), 1))
l2loss = (l2loss * 0.25 * l2_reg).astype(np.float32)
similarity_matrix = np.matmul(anchor, positive.transpose())
celoss = np.mean(
softmax_cross_entropy_with_logits(similarity_matrix, labels))
return l2loss + celoss
class TestNpairLossOp(unittest.TestCase):
def setUp(self):
self.dtype = np.float32
def __assert_close(self, tensor, np_array, msg, atol=1e-4):
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
def test_npair_loss(self):
reg_lambda = 0.002
num_data, feat_dim, num_classes = 18, 6, 3
place = core.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
embeddings_anchor = np.random.rand(num_data,
feat_dim).astype(np.float32)
embeddings_positive = np.random.rand(num_data,
feat_dim).astype(np.float32)
row_labels = np.random.randint(
0, num_classes, size=(num_data)).astype(np.float32)
out_loss = npairloss(
embeddings_anchor,
embeddings_positive,
row_labels,
l2_reg=reg_lambda)
anc = fluid.layers.create_tensor(
dtype='float32', persistable=True, name='anc')
pos = fluid.layers.create_tensor(
dtype='float32', persistable=True, name='pos')
lab = fluid.layers.create_tensor(
dtype='float32', persistable=True, name='lab')
fluid.layers.assign(input=embeddings_anchor, output=anc)
fluid.layers.assign(input=embeddings_positive, output=pos)
fluid.layers.assign(input=row_labels, output=lab)
npair_loss_op = fluid.layers.npair_loss(
anchor=anc, positive=pos, labels=lab, l2_reg=reg_lambda)
out_tensor = exe.run(feed={'anc': anc,
'pos': pos,
'lab': lab},
fetch_list=[npair_loss_op.name])
self.__assert_close(
out_tensor,
out_loss,
"inference output are different at " + str(place) + ", " +
str(np.dtype('float32')) + str(np.array(out_tensor)) +
str(out_loss),
atol=1e-3)
if __name__ == '__main__':
unittest.main()