You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.6 KiB
102 lines
3.6 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import numpy as np
|
|
|
|
|
|
def npairloss(anchor, positive, labels, l2_reg=0.002):
|
|
def softmax_cross_entropy_with_logits(logits, labels):
|
|
logits = np.exp(logits)
|
|
logits = logits / np.sum(logits, axis=1).reshape(-1, 1)
|
|
|
|
return np.mean(
|
|
-np.sum(labels * np.log(logits), axis=1), dtype=np.float32)
|
|
|
|
batch_size = labels.shape[0]
|
|
|
|
labels = np.reshape(labels, (batch_size, 1))
|
|
labels = np.equal(labels, labels.transpose()).astype(float)
|
|
labels = labels / np.sum(labels, axis=1, keepdims=True)
|
|
|
|
l2loss = np.mean(np.sum(np.power(anchor, 2), 1)) + np.mean(
|
|
np.sum(np.power(positive, 2), 1))
|
|
l2loss = (l2loss * 0.25 * l2_reg).astype(np.float32)
|
|
|
|
similarity_matrix = np.matmul(anchor, positive.transpose())
|
|
celoss = np.mean(
|
|
softmax_cross_entropy_with_logits(similarity_matrix, labels))
|
|
|
|
return l2loss + celoss
|
|
|
|
|
|
class TestNpairLossOp(unittest.TestCase):
|
|
def setUp(self):
|
|
self.dtype = np.float32
|
|
|
|
def __assert_close(self, tensor, np_array, msg, atol=1e-4):
|
|
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
|
|
|
|
def test_npair_loss(self):
|
|
reg_lambda = 0.002
|
|
num_data, feat_dim, num_classes = 18, 6, 3
|
|
|
|
place = core.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
embeddings_anchor = np.random.rand(num_data,
|
|
feat_dim).astype(np.float32)
|
|
embeddings_positive = np.random.rand(num_data,
|
|
feat_dim).astype(np.float32)
|
|
row_labels = np.random.randint(
|
|
0, num_classes, size=(num_data)).astype(np.float32)
|
|
out_loss = npairloss(
|
|
embeddings_anchor,
|
|
embeddings_positive,
|
|
row_labels,
|
|
l2_reg=reg_lambda)
|
|
|
|
anc = fluid.layers.create_tensor(
|
|
dtype='float32', persistable=True, name='anc')
|
|
pos = fluid.layers.create_tensor(
|
|
dtype='float32', persistable=True, name='pos')
|
|
lab = fluid.layers.create_tensor(
|
|
dtype='float32', persistable=True, name='lab')
|
|
fluid.layers.assign(input=embeddings_anchor, output=anc)
|
|
fluid.layers.assign(input=embeddings_positive, output=pos)
|
|
fluid.layers.assign(input=row_labels, output=lab)
|
|
|
|
npair_loss_op = fluid.layers.npair_loss(
|
|
anchor=anc, positive=pos, labels=lab, l2_reg=reg_lambda)
|
|
out_tensor = exe.run(feed={'anc': anc,
|
|
'pos': pos,
|
|
'lab': lab},
|
|
fetch_list=[npair_loss_op.name])
|
|
|
|
self.__assert_close(
|
|
out_tensor,
|
|
out_loss,
|
|
"inference output are different at " + str(place) + ", " +
|
|
str(np.dtype('float32')) + str(np.array(out_tensor)) +
|
|
str(out_loss),
|
|
atol=1e-3)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|