You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_print_op.py

126 lines
4.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.backward import append_backward
from paddle.fluid.framework import switch_main_program
from paddle.fluid.framework import Program
import numpy as np
from simple_nets import simple_fc_net, init_data
class TestPrintOpCPU(unittest.TestCase):
def setUp(self):
self.place = core.CPUPlace()
self.x_tensor = core.LoDTensor()
tensor_np = np.random.random(size=(2, 3)).astype('float32')
self.x_tensor.set(tensor_np, self.place)
self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
def build_network(self, only_forward, **kargs):
x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
x.stop_gradient = False
layers.Print(input=x, **kargs)
loss = layers.mean(x)
append_backward(loss=loss)
return loss
def test_forward(self):
switch_main_program(Program())
printed = self.build_network(True, print_phase='forward')
exe = Executor(self.place)
outs = exe.run(feed={'x': self.x_tensor},
fetch_list=[printed],
return_numpy=False)
def test_backward(self):
switch_main_program(Program())
loss = self.build_network(False, print_phase='backward')
exe = Executor(self.place)
outs = exe.run(feed={'x': self.x_tensor},
fetch_list=[loss],
return_numpy=False)
def test_all_parameters(self):
x = layers.data('x', shape=[3], dtype='float32', lod_level=1)
x.stop_gradient = False
for print_tensor_name in [True, False]:
for print_tensor_type in [True, False]:
for print_tensor_shape in [True, False]:
for print_tensor_lod in [True, False]:
layers.Print(
input=x,
print_tensor_name=print_tensor_name,
print_tensor_type=print_tensor_type,
print_tensor_shape=print_tensor_shape,
print_tensor_lod=print_tensor_lod, )
loss = layers.mean(x)
append_backward(loss=loss)
exe = Executor(self.place)
outs = exe.run(feed={'x': self.x_tensor},
fetch_list=[loss],
return_numpy=False)
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestPrintOpGPU(TestPrintOpCPU):
def setUp(self):
self.place = core.CUDAPlace(0)
self.x_tensor = core.LoDTensor()
tensor_np = np.random.random(size=(2, 3)).astype('float32')
self.x_tensor.set(tensor_np, self.place)
self.x_tensor.set_recursive_sequence_lengths([[1, 1]])
class TestPrintOpBackward(unittest.TestCase):
def check_backward(self, use_cuda):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = simple_fc_net()
loss = fluid.layers.Print(loss)
fluid.optimizer.Adam().minimize(loss)
print_ops = [op for op in main.blocks[0].ops if op.type == u'print']
assert len(print_ops) == 2, "The number of print op should be 2"
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
binary = fluid.compiler.CompiledProgram(main).with_data_parallel(
loss_name=loss.name)
img, label = init_data()
feed_dict = {"image": img, "label": label}
exe.run(binary, feed_dict)
def test_fw_bw(self):
if core.is_compiled_with_cuda():
self.check_backward(use_cuda=True)
self.check_backward(use_cuda=False)
if __name__ == '__main__':
unittest.main()