You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_retinanet_detection_ou...

413 lines
15 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#Licensed under the Apache License, Version 2.0 (the "License")
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import copy
from op_test import OpTest
from test_anchor_generator_op import anchor_generator_in_python
from test_multiclass_nms_op import iou
from test_multiclass_nms_op import nms
def multiclass_nms(prediction, class_num, keep_top_k, nms_threshold):
selected_indices = {}
num_det = 0
for c in range(class_num):
if c not in prediction.keys():
continue
cls_dets = prediction[c]
all_scores = np.zeros(len(cls_dets))
for i in range(all_scores.shape[0]):
all_scores[i] = cls_dets[i][4]
indices = nms(cls_dets, all_scores, 0.0, nms_threshold, -1, False, 1.0)
selected_indices[c] = indices
num_det += len(indices)
score_index = []
for c, indices in selected_indices.items():
for idx in indices:
score_index.append((prediction[c][idx][4], c, idx))
sorted_score_index = sorted(
score_index, key=lambda tup: tup[0], reverse=True)
if keep_top_k > -1 and num_det > keep_top_k:
sorted_score_index = sorted_score_index[:keep_top_k]
num_det = keep_top_k
nmsed_outs = []
for s, c, idx in sorted_score_index:
xmin = prediction[c][idx][0]
ymin = prediction[c][idx][1]
xmax = prediction[c][idx][2]
ymax = prediction[c][idx][3]
nmsed_outs.append([c + 1, s, xmin, ymin, xmax, ymax])
return nmsed_outs, num_det
def retinanet_detection_out(boxes_list, scores_list, anchors_list, im_info,
score_threshold, nms_threshold, nms_top_k,
keep_top_k):
class_num = scores_list[0].shape[-1]
im_height, im_width, im_scale = im_info
num_level = len(scores_list)
prediction = {}
for lvl in range(num_level):
scores_per_level = scores_list[lvl]
scores_per_level = scores_per_level.flatten()
bboxes_per_level = boxes_list[lvl]
bboxes_per_level = bboxes_per_level.flatten()
anchors_per_level = anchors_list[lvl]
anchors_per_level = anchors_per_level.flatten()
thresh = score_threshold if lvl < (num_level - 1) else 0.0
selected_indices = np.argwhere(scores_per_level > thresh)
scores = scores_per_level[selected_indices]
sorted_indices = np.argsort(-scores, axis=0, kind='mergesort')
if nms_top_k > -1 and nms_top_k < sorted_indices.shape[0]:
sorted_indices = sorted_indices[:nms_top_k]
for i in range(sorted_indices.shape[0]):
idx = selected_indices[sorted_indices[i]]
idx = idx[0][0]
a = int(idx / class_num)
c = int(idx % class_num)
box_offset = a * 4
anchor_box_width = anchors_per_level[
box_offset + 2] - anchors_per_level[box_offset] + 1
anchor_box_height = anchors_per_level[
box_offset + 3] - anchors_per_level[box_offset + 1] + 1
anchor_box_center_x = anchors_per_level[
box_offset] + anchor_box_width / 2
anchor_box_center_y = anchors_per_level[box_offset +
1] + anchor_box_height / 2
target_box_center_x = bboxes_per_level[
box_offset] * anchor_box_width + anchor_box_center_x
target_box_center_y = bboxes_per_level[
box_offset + 1] * anchor_box_height + anchor_box_center_y
target_box_width = math.exp(bboxes_per_level[box_offset +
2]) * anchor_box_width
target_box_height = math.exp(bboxes_per_level[
box_offset + 3]) * anchor_box_height
pred_box_xmin = target_box_center_x - target_box_width / 2
pred_box_ymin = target_box_center_y - target_box_height / 2
pred_box_xmax = target_box_center_x + target_box_width / 2 - 1
pred_box_ymax = target_box_center_y + target_box_height / 2 - 1
pred_box_xmin = pred_box_xmin / im_scale
pred_box_ymin = pred_box_ymin / im_scale
pred_box_xmax = pred_box_xmax / im_scale
pred_box_ymax = pred_box_ymax / im_scale
pred_box_xmin = max(
min(pred_box_xmin, np.round(im_width / im_scale) - 1), 0.)
pred_box_ymin = max(
min(pred_box_ymin, np.round(im_height / im_scale) - 1), 0.)
pred_box_xmax = max(
min(pred_box_xmax, np.round(im_width / im_scale) - 1), 0.)
pred_box_ymax = max(
min(pred_box_ymax, np.round(im_height / im_scale) - 1), 0.)
if c not in prediction.keys():
prediction[c] = []
prediction[c].append([
pred_box_xmin, pred_box_ymin, pred_box_xmax, pred_box_ymax,
scores_per_level[idx]
])
nmsed_outs, nmsed_num = multiclass_nms(prediction, class_num, keep_top_k,
nms_threshold)
return nmsed_outs, nmsed_num
def batched_retinanet_detection_out(boxes, scores, anchors, im_info,
score_threshold, nms_threshold, nms_top_k,
keep_top_k):
batch_size = scores[0].shape[0]
det_outs = []
lod = []
for n in range(batch_size):
boxes_per_batch = []
scores_per_batch = []
num_level = len(scores)
for lvl in range(num_level):
boxes_per_batch.append(boxes[lvl][n])
scores_per_batch.append(scores[lvl][n])
nmsed_outs, nmsed_num = retinanet_detection_out(
boxes_per_batch, scores_per_batch, anchors, im_info[n],
score_threshold, nms_threshold, nms_top_k, keep_top_k)
lod.append(nmsed_num)
if nmsed_num == 0:
continue
det_outs.extend(nmsed_outs)
return det_outs, lod
class TestRetinanetDetectionOutOp1(OpTest):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
def init_test_input(self):
anchor_num = len(self.aspect_ratios) * self.scales_per_octave
num_levels = self.max_level - self.min_level + 1
self.scores_list = []
self.bboxes_list = []
self.anchors_list = []
for i in range(num_levels):
layer_h = self.layer_h[i]
layer_w = self.layer_w[i]
input_feat = np.random.random((self.batch_size, self.input_channels,
layer_h, layer_w)).astype('float32')
score = np.random.random(
(self.batch_size, self.class_num * anchor_num, layer_h,
layer_w)).astype('float32')
score = np.transpose(score, [0, 2, 3, 1])
score = score.reshape((self.batch_size, -1, self.class_num))
box = np.random.random((self.batch_size, self.box_size * anchor_num,
layer_h, layer_w)).astype('float32')
box = np.transpose(box, [0, 2, 3, 1])
box = box.reshape((self.batch_size, -1, self.box_size))
anchor_sizes = []
for octave in range(self.scales_per_octave):
anchor_sizes.append(
float(self.anchor_strides[i] * (2**octave)) /
float(self.scales_per_octave) * self.anchor_scale)
anchor, var = anchor_generator_in_python(
input_feat=input_feat,
anchor_sizes=anchor_sizes,
aspect_ratios=self.aspect_ratios,
variances=[1.0, 1.0, 1.0, 1.0],
stride=[self.anchor_strides[i], self.anchor_strides[i]],
offset=0.5)
anchor = np.reshape(anchor, [-1, 4])
self.scores_list.append(score.astype('float32'))
self.bboxes_list.append(box.astype('float32'))
self.anchors_list.append(anchor.astype('float32'))
self.im_info = np.array([[256., 256., 1.5]]).astype(
'float32') #im_height, im_width, scale
def setUp(self):
self.set_argument()
self.init_test_input()
nmsed_outs, lod = batched_retinanet_detection_out(
self.bboxes_list, self.scores_list, self.anchors_list, self.im_info,
self.score_threshold, self.nms_threshold, self.nms_top_k,
self.keep_top_k)
nmsed_outs = np.array(nmsed_outs).astype('float32')
self.op_type = 'retinanet_detection_output'
self.inputs = {
'BBoxes': [('b0', self.bboxes_list[0]), ('b1', self.bboxes_list[1]),
('b2', self.bboxes_list[2]), ('b3', self.bboxes_list[3]),
('b4', self.bboxes_list[4])],
'Scores': [('s0', self.scores_list[0]), ('s1', self.scores_list[1]),
('s2', self.scores_list[2]), ('s3', self.scores_list[3]),
('s4', self.scores_list[4])],
'Anchors':
[('a0', self.anchors_list[0]), ('a1', self.anchors_list[1]),
('a2', self.anchors_list[2]), ('a3', self.anchors_list[3]),
('a4', self.anchors_list[4])],
'ImInfo': (self.im_info, [[1, ]])
}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'score_threshold': self.score_threshold,
'nms_top_k': self.nms_top_k,
'nms_threshold': self.nms_threshold,
'keep_top_k': self.keep_top_k,
'nms_eta': 1.,
}
def test_check_output(self):
self.check_output()
class TestRetinanetDetectionOutOp2(OpTest):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
# Here test the case there the shape of each FPN level
# is irrelevant.
self.layer_h = [1, 4, 8, 8, 16]
self.layer_w = [1, 4, 8, 8, 16]
class TestRetinanetDetectionOutOpNo3(TestRetinanetDetectionOutOp1):
def set_argument(self):
# Here set 2.0 to test the case there is no outputs.
# In practical use, 0.0 < score_threshold < 1.0
self.score_threshold = 2.0
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
class TestRetinanetDetectionOutOpNo4(TestRetinanetDetectionOutOp1):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 2
self.max_level = 5
self.nms_threshold = 0.3
self.nms_top_k = 1000
self.keep_top_k = 200
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
def setUp(self):
self.set_argument()
self.init_test_input()
nmsed_outs, lod = batched_retinanet_detection_out(
self.bboxes_list, self.scores_list, self.anchors_list, self.im_info,
self.score_threshold, self.nms_threshold, self.nms_top_k,
self.keep_top_k)
nmsed_outs = np.array(nmsed_outs).astype('float32')
self.op_type = 'retinanet_detection_output'
self.inputs = {
'BBoxes':
[('b0', self.bboxes_list[0]), ('b1', self.bboxes_list[1]),
('b2', self.bboxes_list[2]), ('b3', self.bboxes_list[3])],
'Scores': [('s0', self.scores_list[0]), ('s1', self.scores_list[1]),
('s2', self.scores_list[2]),
('s3', self.scores_list[3])],
'Anchors':
[('a0', self.anchors_list[0]), ('a1', self.anchors_list[1]),
('a2', self.anchors_list[2]), ('a3', self.anchors_list[3])],
'ImInfo': (self.im_info, [[1, ]])
}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'score_threshold': self.score_threshold,
'nms_top_k': self.nms_top_k,
'nms_threshold': self.nms_threshold,
'keep_top_k': self.keep_top_k,
'nms_eta': 1.,
}
def test_check_output(self):
self.check_output()
class TestRetinanetDetectionOutOpNo5(TestRetinanetDetectionOutOp1):
def set_argument(self):
self.score_threshold = 0.05
self.min_level = 3
self.max_level = 7
self.nms_threshold = 0.3
self.nms_top_k = 100
self.keep_top_k = 10
self.scales_per_octave = 3
self.aspect_ratios = [1.0, 2.0, 0.5]
self.anchor_scale = 4
self.anchor_strides = [8, 16, 32, 64, 128]
self.box_size = 4
self.class_num = 80
self.batch_size = 1
self.input_channels = 20
self.layer_h = []
self.layer_w = []
num_levels = self.max_level - self.min_level + 1
for i in range(num_levels):
self.layer_h.append(2**(num_levels - i))
self.layer_w.append(2**(num_levels - i))
if __name__ == '__main__':
unittest.main()