You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_sequence_pad_op.py

146 lines
4.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestSequencePadOp(OpTest):
def set_attr(self):
self.x_shape = [12, 4]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [1.0]
self.padded_length = -1
self.dtype = 'float32'
def set_data(self):
x_data = np.random.uniform(0.1, 0.5, self.x_shape).astype(self.dtype)
pad_value_data = np.array(self.pad_value).astype(self.dtype)
self.inputs = {
'X': (x_data, self.x_len_lod),
'PadValue': pad_value_data
}
self.attrs = {'padded_length': self.padded_length}
def compute(self):
# get padded length
padded_length = self.padded_length
x_len_lod_0 = self.x_len_lod[0]
if padded_length == -1:
max_seq_len = 0
for l in x_len_lod_0:
max_seq_len = max(max_seq_len, l)
padded_length = max_seq_len
# do padding
x_data = self.inputs['X'][0]
pad_value_data = self.inputs['PadValue']
if pad_value_data.shape == (1, ):
pad_value_data = np.broadcast_to(
pad_value_data, shape=x_data.shape[1:])
padded_sequences = []
start_idx = 0
for l in x_len_lod_0:
end_idx = start_idx + l
seq = x_data[start_idx:end_idx]
to_pad_len = padded_length - l
for _ in range(to_pad_len):
seq = np.append(seq, pad_value_data[np.newaxis, :], axis=0)
padded_sequences.append(seq)
start_idx = end_idx
out_data = np.array(padded_sequences)
length = np.array(self.x_len_lod[0]).reshape((-1, 1))
self.outputs = {'Out': out_data, 'Length': length}
def setUp(self):
self.op_type = 'sequence_pad'
self.set_attr()
self.set_data()
self.compute()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSequencePadOp2(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 4]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [1.0, 2.0, 3.0, 4.0]
self.padded_length = -1
self.dtype = 'float32'
class TestSequencePadOp3(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 4]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [1.0]
self.padded_length = 7
self.dtype = 'float32'
class TestSequencePadOp4(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 4]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [1.0, 2.0, 3.0, 4.0]
self.padded_length = 7
self.dtype = 'float32'
class TestSequencePadOp5(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 2, 2]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [1.0]
self.padded_length = -1
self.dtype = 'float32'
class TestSequencePadOp6(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 2, 2]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [[1.0, 2.0], [3.0, 4.0]]
self.padded_length = -1
self.dtype = 'float32'
class TestSequencePadOp7(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 2, 2]
self.x_len_lod = [[2, 3, 4, 3]]
self.pad_value = [1.0]
self.padded_length = 7
self.dtype = 'float32'
class TestSequencePadOp8(TestSequencePadOp):
def set_attr(self):
self.x_shape = [12, 2, 2]
self.x_len_lod = [[0, 8, 0, 4, 0]]
self.pad_value = [1.0]
self.padded_length = 10
self.dtype = 'float32'
if __name__ == '__main__':
unittest.main()