You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
7.6 KiB
218 lines
7.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestSimilarityFocusOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "similarity_focus"
|
|
batch_size = 2
|
|
x_dim, y_dim, z_dim = 3, 2, 2
|
|
self.inputs = {
|
|
'X': np.array([[[[0.8, 0.1], [0.4, 0.5]], [[0.9, 0.7], [0.9, 0.9]],
|
|
[[0.8, 0.9], [0.1, 0.2]]],
|
|
[[[0.2, 0.5], [0.3, 0.4]], [[0.9, 0.7], [0.8, 0.4]],
|
|
[[0.0, 0.2], [0.4, 0.7]]]]),
|
|
}
|
|
self.attrs = {
|
|
'axis': 1,
|
|
'indexes': [0],
|
|
}
|
|
|
|
output = None
|
|
for batch in range(batch_size):
|
|
res = np.zeros((1, y_dim, z_dim)).astype("float32").reshape(-1)
|
|
for index in self.attrs['indexes']:
|
|
channel = self.inputs['X'][batch, index, :, :].reshape(-1).copy(
|
|
)
|
|
tag1 = [0 for i in range(y_dim)]
|
|
tag2 = [0 for i in range(z_dim)]
|
|
cnt = 0
|
|
for i in range(channel.size):
|
|
index = channel.argmax()
|
|
idx1 = index // z_dim
|
|
idx2 = index % z_dim
|
|
if tag1[idx1] + tag2[idx2] == 0:
|
|
tag1[idx1] = 1
|
|
tag2[idx2] = 1
|
|
res[index] = 1
|
|
cnt += 1
|
|
if cnt == min(y_dim, z_dim):
|
|
break
|
|
channel[index] = -1
|
|
res = res.reshape(1, y_dim, z_dim).repeat([x_dim], axis=0)
|
|
res = res.reshape(1, x_dim, y_dim, z_dim)
|
|
if output is not None:
|
|
output = np.concatenate((output, res), axis=0)
|
|
else:
|
|
output = res
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestSimilarityFocusOp_axis1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "similarity_focus"
|
|
batch_size = 3
|
|
x_dim, y_dim, z_dim = 4, 5, 6
|
|
self.inputs = {
|
|
'X': np.random.random(
|
|
(batch_size, x_dim, y_dim, z_dim)).astype("float32"),
|
|
}
|
|
self.attrs = {
|
|
'axis': 1,
|
|
'indexes': [0, 3],
|
|
}
|
|
|
|
output = None
|
|
for batch in range(batch_size):
|
|
res = np.zeros((1, y_dim, z_dim)).astype("float32").reshape(-1)
|
|
for index in self.attrs['indexes']:
|
|
channel = self.inputs['X'][batch, index, :, :].reshape(-1).copy(
|
|
)
|
|
tag1 = [0 for i in range(y_dim)]
|
|
tag2 = [0 for i in range(z_dim)]
|
|
cnt = 0
|
|
for i in range(channel.size):
|
|
index = channel.argmax()
|
|
idx1 = index // z_dim
|
|
idx2 = index % z_dim
|
|
if tag1[idx1] + tag2[idx2] == 0:
|
|
tag1[idx1] = 1
|
|
tag2[idx2] = 1
|
|
res[index] = 1
|
|
cnt += 1
|
|
if cnt == min(y_dim, z_dim):
|
|
break
|
|
channel[index] = -1
|
|
res = res.reshape(1, y_dim, z_dim)
|
|
res = res.repeat([x_dim], axis=0)
|
|
res = res.reshape(1, x_dim, y_dim, z_dim)
|
|
if output is not None:
|
|
output = np.concatenate((output, res), axis=0)
|
|
else:
|
|
output = res
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestSimilarityFocusOp_axis2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "similarity_focus"
|
|
batch_size = 6
|
|
x_dim, y_dim, z_dim = 7, 8, 9
|
|
self.inputs = {
|
|
'X': np.random.random(
|
|
(batch_size, x_dim, y_dim, z_dim)).astype("float32"),
|
|
}
|
|
self.attrs = {
|
|
'axis': 2,
|
|
'indexes': [0, 3, 5],
|
|
}
|
|
|
|
output = None
|
|
for batch in range(batch_size):
|
|
res = np.zeros((x_dim, 1, z_dim)).astype("float32").reshape(-1)
|
|
for index in self.attrs['indexes']:
|
|
channel = self.inputs['X'][batch, :, index, :].reshape(-1).copy(
|
|
)
|
|
tag1 = [0 for i in range(x_dim)]
|
|
tag2 = [0 for i in range(z_dim)]
|
|
cnt = 0
|
|
for i in range(channel.size):
|
|
index = channel.argmax()
|
|
idx1 = index // z_dim
|
|
idx2 = index % z_dim
|
|
if tag1[idx1] + tag2[idx2] == 0:
|
|
tag1[idx1] = 1
|
|
tag2[idx2] = 1
|
|
res[index] = 1
|
|
cnt += 1
|
|
if cnt == min(x_dim, z_dim):
|
|
break
|
|
channel[index] = -1
|
|
res = res.reshape(x_dim, 1, z_dim)
|
|
res = res.repeat([y_dim], axis=1)
|
|
res = res.reshape(1, x_dim, y_dim, z_dim)
|
|
if output is not None:
|
|
output = np.concatenate((output, res), axis=0)
|
|
else:
|
|
output = res
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestSimilarityFocusOp_axis3(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "similarity_focus"
|
|
batch_size = 64
|
|
x_dim, y_dim, z_dim = 48, 48, 13
|
|
self.inputs = {
|
|
'X': np.random.random(
|
|
(batch_size, x_dim, y_dim, z_dim)).astype("float32"),
|
|
}
|
|
self.attrs = {
|
|
'axis': 3,
|
|
'indexes': [0, 2, 7, 9],
|
|
}
|
|
|
|
output = None
|
|
for batch in range(batch_size):
|
|
res = np.zeros((x_dim, y_dim, 1)).astype("float32").reshape(-1)
|
|
for index in self.attrs['indexes']:
|
|
channel = self.inputs['X'][batch, :, :, index].reshape(-1).copy(
|
|
)
|
|
tag1 = [0 for i in range(x_dim)]
|
|
tag2 = [0 for i in range(y_dim)]
|
|
cnt = 0
|
|
for i in range(channel.size):
|
|
index = channel.argmax()
|
|
idx1 = index // y_dim
|
|
idx2 = index % y_dim
|
|
if tag1[idx1] + tag2[idx2] == 0:
|
|
tag1[idx1] = 1
|
|
tag2[idx2] = 1
|
|
res[index] = 1
|
|
cnt += 1
|
|
if cnt == min(x_dim, y_dim):
|
|
break
|
|
channel[index] = -1
|
|
res = res.reshape(x_dim, y_dim, 1)
|
|
res = res.repeat([z_dim], axis=2)
|
|
res = res.reshape(1, x_dim, y_dim, z_dim)
|
|
if output is not None:
|
|
output = np.concatenate((output, res), axis=0)
|
|
else:
|
|
output = res
|
|
self.outputs = {'Out': output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|