You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_similarity_focus_op.py

218 lines
7.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
class TestSimilarityFocusOp(OpTest):
def setUp(self):
self.op_type = "similarity_focus"
batch_size = 2
x_dim, y_dim, z_dim = 3, 2, 2
self.inputs = {
'X': np.array([[[[0.8, 0.1], [0.4, 0.5]], [[0.9, 0.7], [0.9, 0.9]],
[[0.8, 0.9], [0.1, 0.2]]],
[[[0.2, 0.5], [0.3, 0.4]], [[0.9, 0.7], [0.8, 0.4]],
[[0.0, 0.2], [0.4, 0.7]]]]),
}
self.attrs = {
'axis': 1,
'indexes': [0],
}
output = None
for batch in range(batch_size):
res = np.zeros((1, y_dim, z_dim)).astype("float32").reshape(-1)
for index in self.attrs['indexes']:
channel = self.inputs['X'][batch, index, :, :].reshape(-1).copy(
)
tag1 = [0 for i in range(y_dim)]
tag2 = [0 for i in range(z_dim)]
cnt = 0
for i in range(channel.size):
index = channel.argmax()
idx1 = index // z_dim
idx2 = index % z_dim
if tag1[idx1] + tag2[idx2] == 0:
tag1[idx1] = 1
tag2[idx2] = 1
res[index] = 1
cnt += 1
if cnt == min(y_dim, z_dim):
break
channel[index] = -1
res = res.reshape(1, y_dim, z_dim).repeat([x_dim], axis=0)
res = res.reshape(1, x_dim, y_dim, z_dim)
if output is not None:
output = np.concatenate((output, res), axis=0)
else:
output = res
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
class TestSimilarityFocusOp_axis1(OpTest):
def setUp(self):
self.op_type = "similarity_focus"
batch_size = 3
x_dim, y_dim, z_dim = 4, 5, 6
self.inputs = {
'X': np.random.random(
(batch_size, x_dim, y_dim, z_dim)).astype("float32"),
}
self.attrs = {
'axis': 1,
'indexes': [0, 3],
}
output = None
for batch in range(batch_size):
res = np.zeros((1, y_dim, z_dim)).astype("float32").reshape(-1)
for index in self.attrs['indexes']:
channel = self.inputs['X'][batch, index, :, :].reshape(-1).copy(
)
tag1 = [0 for i in range(y_dim)]
tag2 = [0 for i in range(z_dim)]
cnt = 0
for i in range(channel.size):
index = channel.argmax()
idx1 = index // z_dim
idx2 = index % z_dim
if tag1[idx1] + tag2[idx2] == 0:
tag1[idx1] = 1
tag2[idx2] = 1
res[index] = 1
cnt += 1
if cnt == min(y_dim, z_dim):
break
channel[index] = -1
res = res.reshape(1, y_dim, z_dim)
res = res.repeat([x_dim], axis=0)
res = res.reshape(1, x_dim, y_dim, z_dim)
if output is not None:
output = np.concatenate((output, res), axis=0)
else:
output = res
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
class TestSimilarityFocusOp_axis2(OpTest):
def setUp(self):
self.op_type = "similarity_focus"
batch_size = 6
x_dim, y_dim, z_dim = 7, 8, 9
self.inputs = {
'X': np.random.random(
(batch_size, x_dim, y_dim, z_dim)).astype("float32"),
}
self.attrs = {
'axis': 2,
'indexes': [0, 3, 5],
}
output = None
for batch in range(batch_size):
res = np.zeros((x_dim, 1, z_dim)).astype("float32").reshape(-1)
for index in self.attrs['indexes']:
channel = self.inputs['X'][batch, :, index, :].reshape(-1).copy(
)
tag1 = [0 for i in range(x_dim)]
tag2 = [0 for i in range(z_dim)]
cnt = 0
for i in range(channel.size):
index = channel.argmax()
idx1 = index // z_dim
idx2 = index % z_dim
if tag1[idx1] + tag2[idx2] == 0:
tag1[idx1] = 1
tag2[idx2] = 1
res[index] = 1
cnt += 1
if cnt == min(x_dim, z_dim):
break
channel[index] = -1
res = res.reshape(x_dim, 1, z_dim)
res = res.repeat([y_dim], axis=1)
res = res.reshape(1, x_dim, y_dim, z_dim)
if output is not None:
output = np.concatenate((output, res), axis=0)
else:
output = res
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
class TestSimilarityFocusOp_axis3(OpTest):
def setUp(self):
self.op_type = "similarity_focus"
batch_size = 64
x_dim, y_dim, z_dim = 48, 48, 13
self.inputs = {
'X': np.random.random(
(batch_size, x_dim, y_dim, z_dim)).astype("float32"),
}
self.attrs = {
'axis': 3,
'indexes': [0, 2, 7, 9],
}
output = None
for batch in range(batch_size):
res = np.zeros((x_dim, y_dim, 1)).astype("float32").reshape(-1)
for index in self.attrs['indexes']:
channel = self.inputs['X'][batch, :, :, index].reshape(-1).copy(
)
tag1 = [0 for i in range(x_dim)]
tag2 = [0 for i in range(y_dim)]
cnt = 0
for i in range(channel.size):
index = channel.argmax()
idx1 = index // y_dim
idx2 = index % y_dim
if tag1[idx1] + tag2[idx2] == 0:
tag1[idx1] = 1
tag2[idx2] = 1
res[index] = 1
cnt += 1
if cnt == min(x_dim, y_dim):
break
channel[index] = -1
res = res.reshape(x_dim, y_dim, 1)
res = res.repeat([z_dim], axis=2)
res = res.reshape(1, x_dim, y_dim, z_dim)
if output is not None:
output = np.concatenate((output, res), axis=0)
else:
output = res
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()