You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
7.6 KiB
258 lines
7.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestSliceOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "slice"
|
|
self.config()
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.out}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends
|
|
}
|
|
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [1, 0, 2]
|
|
self.ends = [3, 3, 4]
|
|
self.axes = [0, 1, 2]
|
|
self.out = self.input[1:3, 0:3, 2:4, :]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestSliceOp_decs_dim(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "slice"
|
|
self.config()
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.out}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends,
|
|
'decrease_axis': self.decrease_axis,
|
|
}
|
|
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [1, 0, 2]
|
|
self.ends = [2, 3, 4]
|
|
self.axes = [0, 1, 2]
|
|
self.decrease_axis = [0]
|
|
self.out = self.input[1, 0:3, 2:4, :]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestSliceOp_decs_dim_2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "slice"
|
|
self.config()
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.out}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends,
|
|
'decrease_axis': self.decrease_axis,
|
|
}
|
|
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [1, 0, 2]
|
|
self.ends = [2, 1, 4]
|
|
self.axes = [0, 1, 2]
|
|
self.decrease_axis = [0, 1]
|
|
self.out = self.input[1, 0, 2:4, :]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestSliceOp_decs_dim_3(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "slice"
|
|
self.config()
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.out}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends,
|
|
'decrease_axis': self.decrease_axis,
|
|
}
|
|
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [-1, 0, 2]
|
|
self.ends = [1000000, 1, 4]
|
|
self.axes = [0, 1, 2]
|
|
self.decrease_axis = [0, 1]
|
|
self.out = self.input[-1, 0, 2:4, :]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestSliceOp_decs_dim_5(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "slice"
|
|
self.config()
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.out}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends,
|
|
'decrease_axis': self.decrease_axis,
|
|
}
|
|
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [-1]
|
|
self.ends = [1000000]
|
|
self.axes = [3]
|
|
self.decrease_axis = [3]
|
|
self.out = self.input[:, :, :, -1]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestSliceOp_decs_dim_6(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "slice"
|
|
self.config()
|
|
self.inputs = {'Input': self.input}
|
|
self.outputs = {'Out': self.out}
|
|
self.attrs = {
|
|
'axes': self.axes,
|
|
'starts': self.starts,
|
|
'ends': self.ends,
|
|
'decrease_axis': self.decrease_axis,
|
|
}
|
|
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [0, 1, 2, 3]
|
|
self.ends = [1, 2, 3, 4]
|
|
self.axes = [0, 1, 2, 3]
|
|
self.decrease_axis = [0, 1, 2, 3]
|
|
self.out = self.input[0, 1, 2, 3:4]
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
class TestCase1(TestSliceOp):
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [-3, 0, 2]
|
|
self.ends = [3, 100, -1]
|
|
self.axes = [0, 1, 2]
|
|
self.out = self.input[-3:3, 0:100, 2:-1, :]
|
|
|
|
|
|
class TestCase2(TestSliceOp):
|
|
def config(self):
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float32")
|
|
self.starts = [-3, 0, 2]
|
|
self.ends = [3, 100, -1]
|
|
self.axes = [0, 1, 3]
|
|
self.out = self.input[-3:3, 0:100, :, 2:-1]
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestFP16(TestSliceOp):
|
|
def config(self):
|
|
self.dtype = "float16"
|
|
self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
|
|
self.starts = [-3, 0, 2]
|
|
self.ends = [3, 100, -1]
|
|
self.axes = [0, 1, 3]
|
|
self.out = self.input[-3:3, 0:100, :, 2:-1]
|
|
|
|
def test_check_output(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
|
|
def test_check_grad_normal(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestFP16_2(TestSliceOp):
|
|
def config(self):
|
|
self.dtype = "float16"
|
|
self.input = np.random.random([3, 4, 5]).astype(self.dtype)
|
|
self.starts = [0]
|
|
self.ends = [1]
|
|
self.axes = [1]
|
|
self.out = self.input[:, 0:1, :]
|
|
|
|
def test_check_output(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
|
|
def test_check_grad_normal(self):
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ['Input'],
|
|
'Out',
|
|
max_relative_error=0.006,
|
|
numeric_grad_delta=0.5)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|