You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.4 KiB
73 lines
2.4 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
|
|
|
|
class TestUniqueOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "unique"
|
|
self.init_config()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def init_config(self):
|
|
self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), }
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
|
self.outputs = {
|
|
'Out': np.array(
|
|
[2, 3, 1, 5], dtype='int64'),
|
|
'Index': np.array(
|
|
[0, 1, 1, 2, 3, 1], dtype='int32')
|
|
}
|
|
|
|
|
|
class TestOne(TestUniqueOp):
|
|
def init_config(self):
|
|
self.inputs = {'X': np.array([2], dtype='int64'), }
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
|
self.outputs = {
|
|
'Out': np.array(
|
|
[2], dtype='int64'),
|
|
'Index': np.array(
|
|
[0], dtype='int32')
|
|
}
|
|
|
|
|
|
class TestRandom(TestUniqueOp):
|
|
def init_config(self):
|
|
self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
|
|
np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
|
|
True)
|
|
np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
|
|
np_tuple.sort(key=lambda x: x[1])
|
|
target_out = np.array([i[0] for i in np_tuple], dtype='int64')
|
|
target_index = np.array(
|
|
[list(target_out).index(i) for i in self.inputs['X']],
|
|
dtype='int64')
|
|
|
|
self.outputs = {'Out': target_out, 'Index': target_index}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|