You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_unique.py

73 lines
2.4 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
class TestUniqueOp(OpTest):
def setUp(self):
self.op_type = "unique"
self.init_config()
def test_check_output(self):
self.check_output()
def init_config(self):
self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), }
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
self.outputs = {
'Out': np.array(
[2, 3, 1, 5], dtype='int64'),
'Index': np.array(
[0, 1, 1, 2, 3, 1], dtype='int32')
}
class TestOne(TestUniqueOp):
def init_config(self):
self.inputs = {'X': np.array([2], dtype='int64'), }
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
self.outputs = {
'Out': np.array(
[2], dtype='int64'),
'Index': np.array(
[0], dtype='int32')
}
class TestRandom(TestUniqueOp):
def init_config(self):
self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
True)
np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
np_tuple.sort(key=lambda x: x[1])
target_out = np.array([i[0] for i in np_tuple], dtype='int64')
target_index = np.array(
[list(target_out).index(i) for i in self.inputs['X']],
dtype='int64')
self.outputs = {'Out': target_out, 'Index': target_index}
if __name__ == "__main__":
unittest.main()