You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.2 KiB
63 lines
2.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
template <typename Place, typename T>
|
|
class SigmoidKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto input = context.Input<Tensor>("X");
|
|
auto output = context.Output<Tensor>("Y");
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
// The clipping is used in Paddle's raw implenmention
|
|
auto X = EigenVector<T>::Flatten(*input);
|
|
auto Y = EigenVector<T>::Flatten(*output);
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp());
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class SigmoidGradKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto Y_t = context.Input<Tensor>("Y");
|
|
auto dY_t = context.Input<Tensor>(framework::GradVarName("Y"));
|
|
auto dX_t = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
dX_t->mutable_data<T>(context.GetPlace());
|
|
|
|
auto dX = EigenVector<T>::Flatten(*dX_t);
|
|
auto Y = EigenVector<T>::Flatten(*Y_t);
|
|
auto dY = EigenVector<T>::Flatten(*dY_t);
|
|
dX.device(context.GetEigenDevice<Place>()) = dY * Y * (1. - Y);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|