You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_complex_abs.py

138 lines
4.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function, division
import unittest
import numpy as np
import paddle
import paddle.fluid.dygraph as dg
from op_test import OpTest
class TestComplexAbsOp(OpTest):
def setUp(self):
paddle.enable_static()
self.op_type = "abs"
self.dtype = np.float64
self.shape = (2, 3, 4, 5)
self.init_input_output()
self.init_grad_input_output()
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
self.outputs = {'Out': self.out}
def init_input_output(self):
self.x = np.random.random(self.shape).astype(
self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
self.out = np.abs(self.x)
def init_grad_input_output(self):
self.grad_out = np.ones(self.shape, self.dtype)
self.grad_x = self.grad_out * (self.x / np.abs(self.x))
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['X'],
'Out',
user_defined_grads=[self.grad_x],
user_defined_grad_outputs=[self.grad_out])
class TestComplexAbsOpZeroValues(OpTest):
def setUp(self):
paddle.enable_static()
self.op_type = "abs"
self.dtype = np.float64
self.shape = (2, 3, 4, 5)
self.init_input_output()
self.init_grad_input_output()
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
self.outputs = {'Out': self.out}
def init_input_output(self):
self.x = np.zeros(self.shape).astype(self.dtype) + 1J * np.zeros(
self.shape).astype(self.dtype)
self.out = np.abs(self.x)
def init_grad_input_output(self):
self.grad_out = np.ones(self.shape, self.dtype)
self.grad_x = np.zeros(self.shape, self.dtype)
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['X'],
'Out',
user_defined_grads=[self.grad_x],
user_defined_grad_outputs=[self.grad_out])
class TestAbs(unittest.TestCase):
def setUp(self):
self._dtypes = ["float32", "float64"]
self._places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self._places.append(paddle.CUDAPlace(0))
def test_all_positive(self):
for dtype in self._dtypes:
x = 1 + 10 * np.random.random([13, 3, 3]).astype(dtype)
for place in self._places:
with dg.guard(place):
y = paddle.abs(paddle.to_tensor(x))
self.assertTrue(np.allclose(np.abs(x), y.numpy()))
class TestRealAbsOp(OpTest):
def setUp(self):
paddle.enable_static()
self.op_type = "abs"
self.dtype = np.float64
self.shape = (2, 3, 4, 5)
self.init_input_output()
self.init_grad_input_output()
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
self.outputs = {'Out': self.out}
def init_input_output(self):
self.x = 1 + np.random.random(self.shape).astype(self.dtype)
self.out = np.abs(self.x)
def init_grad_input_output(self):
self.grad_out = np.ones(self.shape, self.dtype)
self.grad_x = self.grad_out * (self.x / np.abs(self.x))
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['X'],
'Out',
user_defined_grads=[self.grad_x],
user_defined_grad_outputs=[self.grad_out])
if __name__ == '__main__':
unittest.main()