You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_deform_conv2d.py

609 lines
20 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
import paddle.nn.initializer as I
import numpy as np
import unittest
from unittest import TestCase
class TestDeformConv2D(TestCase):
batch_size = 4
spatial_shape = (5, 5)
dtype = "float32"
def setUp(self):
self.in_channels = 2
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [0, 0]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = True
def prepare(self):
np.random.seed(1)
paddle.seed(1)
if isinstance(self.kernel_size, int):
filter_shape = (self.kernel_size, ) * 2
else:
filter_shape = tuple(self.kernel_size)
self.filter_shape = filter_shape
self.weight = np.random.uniform(
-1, 1, (self.out_channels, self.in_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
def out_size(in_size, pad_size, dilation_size, kernel_size,
stride_size):
return (in_size + 2 * pad_size -
(dilation_size * (kernel_size - 1) + 1)) / stride_size + 1
out_h = int(
out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
self.kernel_size[0], self.stride[0]))
out_w = int(
out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
self.kernel_size[1], self.stride[1]))
out_shape = (out_h, out_w)
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
filter_shape[0] * filter_shape[1]) + out_shape
self.mask_shape = (self.batch_size, self.deformable_groups *
filter_shape[0] * filter_shape[1]) + out_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
self.offset = np.random.uniform(-1, 1,
self.offset_shape).astype(self.dtype)
self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)
def static_graph_case_dcn(self):
main = paddle.static.Program()
start = paddle.static.Program()
paddle.enable_static()
with paddle.static.program_guard(main, start):
x = paddle.static.data(
"input", (-1, self.in_channels, -1, -1), dtype=self.dtype)
offset = paddle.static.data(
"offset", (-1, self.deformable_groups * 2 *
self.filter_shape[0] * self.filter_shape[1], -1, -1),
dtype=self.dtype)
mask = paddle.static.data(
"mask", (-1, self.deformable_groups * self.filter_shape[0] *
self.filter_shape[1], -1, -1),
dtype=self.dtype)
y_v1 = paddle.fluid.layers.deformable_conv(
input=x,
offset=offset,
mask=None,
num_filters=self.out_channels,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
deformable_groups=self.deformable_groups,
im2col_step=1,
param_attr=I.Assign(self.weight),
bias_attr=False if self.no_bias else I.Assign(self.bias),
modulated=False)
y_v2 = paddle.fluid.layers.deformable_conv(
input=x,
offset=offset,
mask=mask,
num_filters=self.out_channels,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
deformable_groups=self.deformable_groups,
im2col_step=1,
param_attr=I.Assign(self.weight),
bias_attr=False if self.no_bias else I.Assign(self.bias))
exe = paddle.static.Executor(self.place)
exe.run(start)
out_v1, out_v2 = exe.run(main,
feed={
"input": self.input,
"offset": self.offset,
"mask": self.mask
},
fetch_list=[y_v1, y_v2])
return out_v1, out_v2
def dygraph_case_dcn(self):
paddle.disable_static()
x = paddle.to_tensor(self.input)
offset = paddle.to_tensor(self.offset)
mask = paddle.to_tensor(self.mask)
bias = None if self.no_bias else paddle.to_tensor(self.bias)
deform_conv2d = paddle.vision.ops.DeformConv2D(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
deformable_groups=self.deformable_groups,
groups=self.groups,
weight_attr=I.Assign(self.weight),
bias_attr=False if self.no_bias else I.Assign(self.bias))
y_v1 = deform_conv2d(x, offset)
y_v2 = deform_conv2d(x, offset, mask)
out_v1 = y_v1.numpy()
out_v2 = y_v2.numpy()
return out_v1, out_v2
def _test_identity(self):
self.prepare()
static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)
def test_identity(self):
self.place = paddle.CPUPlace()
self._test_identity()
if paddle.is_compiled_with_cuda():
self.place = paddle.CUDAPlace(0)
self._test_identity()
class TestDeformConv2DFunctional(TestCase):
batch_size = 4
spatial_shape = (5, 5)
dtype = "float32"
def setUp(self):
self.in_channels = 2
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [0, 0]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = True
def prepare(self):
np.random.seed(1)
paddle.seed(1)
if isinstance(self.kernel_size, int):
filter_shape = (self.kernel_size, ) * 2
else:
filter_shape = tuple(self.kernel_size)
self.filter_shape = filter_shape
self.weight = np.random.uniform(
-1, 1, (self.out_channels, self.in_channels // self.groups
) + filter_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(-1, 1, (
self.out_channels, )).astype(self.dtype)
def out_size(in_size, pad_size, dilation_size, kernel_size,
stride_size):
return (in_size + 2 * pad_size -
(dilation_size * (kernel_size - 1) + 1)) / stride_size + 1
out_h = int(
out_size(self.spatial_shape[0], self.padding[0], self.dilation[0],
self.kernel_size[0], self.stride[0]))
out_w = int(
out_size(self.spatial_shape[1], self.padding[1], self.dilation[1],
self.kernel_size[1], self.stride[1]))
out_shape = (out_h, out_w)
self.input_shape = (self.batch_size, self.in_channels
) + self.spatial_shape
self.offset_shape = (self.batch_size, self.deformable_groups * 2 *
filter_shape[0] * filter_shape[1]) + out_shape
self.mask_shape = (self.batch_size, self.deformable_groups *
filter_shape[0] * filter_shape[1]) + out_shape
self.input = np.random.uniform(-1, 1,
self.input_shape).astype(self.dtype)
self.offset = np.random.uniform(-1, 1,
self.offset_shape).astype(self.dtype)
self.mask = np.random.uniform(-1, 1, self.mask_shape).astype(self.dtype)
def static_graph_case_dcn(self):
main = paddle.static.Program()
start = paddle.static.Program()
paddle.enable_static()
with paddle.static.program_guard(main, start):
x = paddle.static.data(
"input", (-1, self.in_channels, -1, -1), dtype=self.dtype)
offset = paddle.static.data(
"offset", (-1, self.deformable_groups * 2 *
self.filter_shape[0] * self.filter_shape[1], -1, -1),
dtype=self.dtype)
mask = paddle.static.data(
"mask", (-1, self.deformable_groups * self.filter_shape[0] *
self.filter_shape[1], -1, -1),
dtype=self.dtype)
y_v1 = paddle.fluid.layers.deformable_conv(
input=x,
offset=offset,
mask=None,
num_filters=self.out_channels,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
deformable_groups=self.deformable_groups,
im2col_step=1,
param_attr=I.Assign(self.weight),
bias_attr=False if self.no_bias else I.Assign(self.bias),
modulated=False)
y_v2 = paddle.fluid.layers.deformable_conv(
input=x,
offset=offset,
mask=mask,
num_filters=self.out_channels,
filter_size=self.filter_shape,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
deformable_groups=self.deformable_groups,
im2col_step=1,
param_attr=I.Assign(self.weight),
bias_attr=False if self.no_bias else I.Assign(self.bias))
exe = paddle.static.Executor(self.place)
exe.run(start)
out_v1, out_v2 = exe.run(main,
feed={
"input": self.input,
"offset": self.offset,
"mask": self.mask
},
fetch_list=[y_v1, y_v2])
return out_v1, out_v2
def dygraph_case_dcn(self):
paddle.disable_static()
x = paddle.to_tensor(self.input)
offset = paddle.to_tensor(self.offset)
mask = paddle.to_tensor(self.mask)
weight = paddle.to_tensor(self.weight)
bias = None if self.no_bias else paddle.to_tensor(self.bias)
y_v1 = paddle.vision.ops.deform_conv2d(
x=x,
offset=offset,
weight=weight,
bias=bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
deformable_groups=self.deformable_groups,
groups=self.groups, )
y_v2 = paddle.vision.ops.deform_conv2d(
x=x,
offset=offset,
mask=mask,
weight=weight,
bias=bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
deformable_groups=self.deformable_groups,
groups=self.groups, )
out_v1 = y_v1.numpy()
out_v2 = y_v2.numpy()
return out_v1, out_v2
def new_api_static_graph_case_dcn(self):
main = paddle.static.Program()
start = paddle.static.Program()
paddle.enable_static()
with paddle.static.program_guard(main, start):
x = paddle.static.data(
"input", (-1, self.in_channels, -1, -1), dtype=self.dtype)
offset = paddle.static.data(
"offset", (-1, self.deformable_groups * 2 *
self.filter_shape[0] * self.filter_shape[1], -1, -1),
dtype=self.dtype)
mask = paddle.static.data(
"mask", (-1, self.deformable_groups * self.filter_shape[0] *
self.filter_shape[1], -1, -1),
dtype=self.dtype)
weight = paddle.static.data(
"weight", list(self.weight.shape), dtype=self.dtype)
if not self.no_bias:
bias = paddle.static.data("bias", [-1], dtype=self.dtype)
y_v1 = paddle.vision.ops.deform_conv2d(
x=x,
offset=offset,
weight=weight,
bias=None if self.no_bias else bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
deformable_groups=self.deformable_groups,
groups=self.groups, )
y_v2 = paddle.vision.ops.deform_conv2d(
x=x,
offset=offset,
mask=mask,
weight=weight,
bias=None if self.no_bias else bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
deformable_groups=self.deformable_groups,
groups=self.groups, )
exe = paddle.static.Executor(self.place)
exe.run(start)
feed_dict = {
"input": self.input,
"offset": self.offset,
"mask": self.mask,
"weight": self.weight
}
if not self.no_bias:
feed_dict["bias"] = self.bias
out_v1, out_v2 = exe.run(main, feed=feed_dict, fetch_list=[y_v1, y_v2])
return out_v1, out_v2
def _test_identity(self):
self.prepare()
static_dcn_v1, static_dcn_v2 = self.static_graph_case_dcn()
dy_dcn_v1, dy_dcn_v2 = self.dygraph_case_dcn()
new_static_dcn_v1, new_static_dcn_v2 = self.new_api_static_graph_case_dcn(
)
np.testing.assert_array_almost_equal(static_dcn_v1, dy_dcn_v1)
np.testing.assert_array_almost_equal(static_dcn_v2, dy_dcn_v2)
np.testing.assert_array_almost_equal(static_dcn_v1, new_static_dcn_v1)
np.testing.assert_array_almost_equal(static_dcn_v2, new_static_dcn_v2)
def test_identity(self):
self.place = paddle.CPUPlace()
self._test_identity()
if paddle.is_compiled_with_cuda():
self.place = paddle.CUDAPlace(0)
self._test_identity()
# testcases for DeformConv2D
class TestDeformConv2DWithPadding(TestDeformConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [2, 2]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = True
class TestDeformConv2DWithBias(TestDeformConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [2, 2]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DWithAsynPadding(TestDeformConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 2]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DWithDilation(TestDeformConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [1, 1]
self.dilation = [3, 3]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DWithStride(TestDeformConv2D):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [2, 2]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DWithDeformable_Groups(TestDeformConv2D):
def setUp(self):
self.in_channels = 5
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 5
self.groups = 1
self.no_bias = False
class TestDeformConv2DWithGroups(TestDeformConv2D):
def setUp(self):
self.in_channels = 5
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 5
self.no_bias = False
# testcases for deform_conv2d
class TestDeformConv2DFunctionalWithPadding(TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [2, 2]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = True
class TestDeformConv2DFunctionalWithBias(TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [2, 2]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DFunctionalWithAsynPadding(TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 2]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DFunctionalWithDilation(TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [1, 1]
self.dilation = [3, 3]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DFunctionalWithStride(TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 3
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [2, 2]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 1
self.no_bias = False
class TestDeformConv2DFunctionalWithDeformable_Groups(
TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 5
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 5
self.groups = 1
self.no_bias = False
class TestDeformConv2DFunctionalWithGroups(TestDeformConv2DFunctional):
def setUp(self):
self.in_channels = 5
self.out_channels = 5
self.kernel_size = [3, 3]
self.padding = [1, 1]
self.stride = [1, 1]
self.dilation = [1, 1]
self.deformable_groups = 1
self.groups = 5
self.no_bias = False
if __name__ == "__main__":
unittest.main()