You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.5 KiB
110 lines
3.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
|
|
|
|
class TestSumOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "sum"
|
|
self.use_mkldnn = False
|
|
self.init_kernel_type()
|
|
x0 = np.random.random((3, 4)).astype('float32')
|
|
x1 = np.random.random((3, 4)).astype('float32')
|
|
x2 = np.random.random((3, 4)).astype('float32')
|
|
self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
|
|
y = x0 + x1 + x2
|
|
self.outputs = {'Out': y}
|
|
self.attrs = {'use_mkldnn': self.use_mkldnn}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['x0'], 'Out')
|
|
|
|
def init_kernel_type(self):
|
|
pass
|
|
|
|
|
|
class TestSelectedRowsSumOp(OpTest):
|
|
def check_with_place(self, place):
|
|
scope = core.Scope()
|
|
self.check_input_and_optput(scope, place, True, True, True)
|
|
self.check_input_and_optput(scope, place, False, True, True)
|
|
self.check_input_and_optput(scope, place, False, False, True)
|
|
self.check_input_and_optput(scope, place, False, False, False)
|
|
|
|
def check_input_and_optput(self,
|
|
scope,
|
|
place,
|
|
w1_has_data=False,
|
|
w2_has_data=False,
|
|
w3_has_data=False):
|
|
|
|
self.create_selected_rows(scope, place, "W1", w1_has_data)
|
|
self.create_selected_rows(scope, place, "W2", w2_has_data)
|
|
self.create_selected_rows(scope, place, "W3", w3_has_data)
|
|
|
|
# create Out Variable
|
|
out = scope.var('Out').get_selected_rows()
|
|
|
|
# create and run sum operator
|
|
sum_op = Operator("sum", X=["W1", "W2", "W3"], Out='Out')
|
|
sum_op.run(scope, place)
|
|
|
|
has_data_w_num = 0
|
|
for w in [w1_has_data, w2_has_data, w3_has_data]:
|
|
if not w:
|
|
has_data_w_num += 1
|
|
|
|
self.assertEqual(7 * has_data_w_num, len(out.rows()))
|
|
|
|
def create_selected_rows(self, scope, place, var_name, isEmpty):
|
|
# create and initialize W Variable
|
|
if not isEmpty:
|
|
rows = [0, 1, 2, 3, 4, 5, 6]
|
|
row_numel = 12
|
|
else:
|
|
rows = []
|
|
row_numel = 12
|
|
|
|
var = scope.var(var_name)
|
|
w_selected_rows = var.get_selected_rows()
|
|
w_selected_rows.set_height(len(rows))
|
|
w_selected_rows.set_rows(rows)
|
|
w_array = np.ones((len(rows), row_numel)).astype("float32")
|
|
for i in range(len(rows)):
|
|
w_array[i] *= i
|
|
w_tensor = w_selected_rows.get_tensor()
|
|
w_tensor.set(w_array, place)
|
|
|
|
return var
|
|
|
|
def test_w_is_selected_rows(self):
|
|
places = [core.CPUPlace()]
|
|
# currently only support CPU
|
|
for place in places:
|
|
self.check_with_place(place)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|