You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/memory/allocation/legacy_allocator.cc

418 lines
13 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <string>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_JEMALLOC
#include <jemalloc/jemalloc.h>
#endif
#include "glog/logging.h"
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/split.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
DEFINE_bool(init_allocated_mem, false,
"It is a mistake that the values of the memory allocated by "
"BuddyAllocator are always zeroed in some op's implementation. "
"To find this error in time, we use init_allocated_mem to indicate "
"that initializing the allocated memory with a small value "
"during unit testing.");
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(benchmark);
namespace paddle {
namespace memory {
namespace legacy {
template <typename Place>
void *Alloc(const Place &place, size_t size);
template <typename Place>
void Free(const Place &place, void *p, size_t size);
template <typename Place>
size_t Used(const Place &place);
struct Usage : public boost::static_visitor<size_t> {
size_t operator()(const platform::CPUPlace &cpu) const;
size_t operator()(const platform::CUDAPlace &gpu) const;
size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const;
};
size_t memory_usage(const platform::Place &p);
using BuddyAllocator = detail::BuddyAllocator;
BuddyAllocator *GetCPUBuddyAllocator() {
// We tried thread_local for inference::RNN1 model, but that not works much
// for multi-thread test.
static std::once_flag init_flag;
static detail::BuddyAllocator *a = nullptr;
std::call_once(init_flag, []() {
a = new detail::BuddyAllocator(
std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
});
return a;
}
// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct NaiveAllocator {
void *Alloc(size_t size) { return malloc(size); }
void Free(void *p) {
PADDLE_ENFORCE(p);
free(p);
}
static NaiveAllocator *Instance() {
static NaiveAllocator x;
return &x;
}
private:
std::mutex lock_;
};
template <>
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
#ifdef PADDLE_WITH_JEMALLOC
void *p = malloc(size);
#else
void *p = GetCPUBuddyAllocator()->Alloc(size);
#endif
if (FLAGS_init_allocated_mem) {
memset(p, 0xEF, size);
}
VLOG(10) << " pointer=" << p;
return p;
}
template <>
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p,
size_t size) {
VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
#ifdef PADDLE_WITH_JEMALLOC
free(p);
#else
GetCPUBuddyAllocator()->Free(p);
#endif
}
template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
#ifdef PADDLE_WITH_JEMALLOC
// fake the result of used memory when PADDLE_WITH_JEMALLOC is ON
return 0U;
#else
return GetCPUBuddyAllocator()->Used();
#endif
}
#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
static std::once_flag init_flag;
static detail::BuddyAllocator **a_arr = nullptr;
static std::vector<int> devices;
std::call_once(init_flag, [gpu_id]() {
devices = platform::GetSelectedDevices();
int gpu_num = devices.size();
allocation::GPUMemMonitor.Initialize(devices.size());
a_arr = new BuddyAllocator *[gpu_num];
for (size_t i = 0; i < devices.size(); ++i) {
int dev_id = devices[i];
a_arr[i] = nullptr;
platform::SetDeviceId(dev_id);
a_arr[i] = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
new detail::GPUAllocator(dev_id)),
platform::GpuMinChunkSize(),
platform::GpuMaxChunkSize());
VLOG(10) << "\n\nNOTE:\n"
<< "You can set GFlags environment variable "
<< "'FLAGS_fraction_of_gpu_memory_to_use' "
<< "or 'FLAGS_initial_gpu_memory_in_mb' "
<< "or 'FLAGS_reallocate_gpu_memory_in_mb' "
<< "to change the memory size for GPU usage.\n"
<< "Current 'FLAGS_fraction_of_gpu_memory_to_use' value is "
<< FLAGS_fraction_of_gpu_memory_to_use
<< ". Current 'FLAGS_initial_gpu_memory_in_mb' value is "
<< FLAGS_initial_gpu_memory_in_mb
<< ". Current 'FLAGS_reallocate_gpu_memory_in_mb' value is "
<< FLAGS_reallocate_gpu_memory_in_mb << "\n\n";
}
platform::SetDeviceId(gpu_id);
});
auto pos = std::distance(devices.begin(),
std::find(devices.begin(), devices.end(), gpu_id));
return a_arr[pos];
}
#endif
template <>
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace &place) {
#ifdef PADDLE_WITH_CUDA
return GetGPUBuddyAllocator(place.device)->Used();
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}
template <>
void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
size_t size) {
#ifdef PADDLE_WITH_CUDA
auto *buddy_allocator = GetGPUBuddyAllocator(place.device);
auto *ptr = buddy_allocator->Alloc(size);
if (ptr == nullptr) {
platform::CUDADeviceGuard(place.device);
size_t avail, total;
platform::GpuMemoryUsage(&avail, &total);
LOG(FATAL) << "Cannot allocate " << string::HumanReadableSize(size)
<< " in GPU " << place.device << ", available "
<< string::HumanReadableSize(avail) << "total " << total
<< "GpuMinChunkSize "
<< string::HumanReadableSize(buddy_allocator->GetMinChunkSize())
<< "GpuMaxChunkSize "
<< string::HumanReadableSize(buddy_allocator->GetMaxChunkSize())
<< "GPU memory used: "
<< string::HumanReadableSize(Used<platform::CUDAPlace>(place));
} else {
if (FLAGS_benchmark) {
allocation::GPUMemMonitor.Add(place.device, size);
}
if (FLAGS_init_allocated_mem) {
cudaMemset(ptr, 0xEF, size);
}
}
return ptr;
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}
template <>
void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p,
size_t size) {
#ifdef PADDLE_WITH_CUDA
GetGPUBuddyAllocator(place.device)->Free(p);
if (FLAGS_benchmark) {
allocation::GPUMemMonitor.Minus(place.device, size);
}
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}
#ifdef PADDLE_WITH_CUDA
BuddyAllocator *GetCUDAPinnedBuddyAllocator() {
static std::once_flag init_flag;
static BuddyAllocator *ba = nullptr;
std::call_once(init_flag, []() {
ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
new detail::CUDAPinnedAllocator),
platform::CUDAPinnedMinChunkSize(),
platform::CUDAPinnedMaxChunkSize());
});
return ba;
}
#endif
template <>
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place) {
#ifdef PADDLE_WITH_CUDA
return GetCUDAPinnedBuddyAllocator()->Used();
#else
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
template <>
void *Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
size_t size) {
#ifdef PADDLE_WITH_CUDA
auto *buddy_allocator = GetCUDAPinnedBuddyAllocator();
void *ptr = buddy_allocator->Alloc(size);
if (ptr == nullptr) {
LOG(WARNING) << "cudaHostAlloc Cannot allocate " << size
<< " bytes in CUDAPinnedPlace";
}
if (FLAGS_init_allocated_mem) {
memset(ptr, 0xEF, size);
}
return ptr;
#else
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
template <>
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
void *p, size_t size) {
#ifdef PADDLE_WITH_CUDA
GetCUDAPinnedBuddyAllocator()->Free(p);
#else
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
struct AllocVisitor : public boost::static_visitor<void *> {
inline explicit AllocVisitor(size_t size) : size_(size) {}
template <typename Place>
inline void *operator()(const Place &place) const {
return Alloc<Place>(place, size_);
}
private:
size_t size_;
};
struct FreeVisitor : public boost::static_visitor<void> {
inline explicit FreeVisitor(void *ptr, size_t size)
: ptr_(ptr), size_(size) {}
template <typename Place>
inline void operator()(const Place &place) const {
Free<Place>(place, ptr_, size_);
}
private:
void *ptr_;
size_t size_;
};
size_t Usage::operator()(const platform::CPUPlace &cpu) const {
return Used(cpu);
}
size_t Usage::operator()(const platform::CUDAPlace &gpu) const {
#ifdef PADDLE_WITH_CUDA
return Used(gpu);
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}
size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
#ifdef PADDLE_WITH_CUDA
return Used(cuda_pinned);
#else
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}
} // namespace legacy
namespace allocation {
LegacyMemMonitor GPUMemMonitor;
Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
auto *tmp_alloc = new Allocation(ptr, size, place_);
platform::MemEvenRecorder::Instance().PushMemRecord(
static_cast<void *>(tmp_alloc), place_, size);
return tmp_alloc;
}
void LegacyAllocator::Free(Allocation *allocation) {
boost::apply_visitor(
legacy::FreeVisitor(allocation->ptr(), allocation->size()),
allocation->place());
platform::MemEvenRecorder::Instance().PopMemRecord(
static_cast<void *>(allocation), place_);
delete allocation;
}
bool MemInfo::Add(const size_t &size) {
std::lock_guard<std::mutex> lock(mutex_);
usage_ += size;
bool peak_point = usage_ > peak_usage_;
if (peak_point) peak_usage_ = usage_;
return peak_point;
}
void MemInfo::Minus(const size_t &size) {
std::lock_guard<std::mutex> lock(mutex_);
usage_ -= size;
}
uint64_t MemInfo::GetPeakUsage() const { return peak_usage_; }
LegacyMemMonitor::~LegacyMemMonitor() {
for (auto &item : gpu_mem_info_) delete item.second;
}
void LegacyMemMonitor::Initialize(const int &device_num) {
for (auto i = 0; i < device_num; ++i) {
gpu_mem_info_[i] = new MemInfo();
}
}
void LegacyMemMonitor::Add(const int &device, const size_t &size) {
if (gpu_mem_info_[device]->Add(size)) {
VLOG(3) << "#LegacyMemMonitor# device: " << device
<< " peak memory usage : "
<< (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB";
}
}
void LegacyMemMonitor::Minus(const int &device, const size_t &size) {
gpu_mem_info_[device]->Minus(size);
}
uint64_t LegacyMemMonitor::GetMemUsage(const int &device) const {
return gpu_mem_info_.find(device) == gpu_mem_info_.end()
? 0
: gpu_mem_info_.at(device)->GetPeakUsage();
}
void LegacyMemMonitor::PrintMemUsage() {
std::vector<int> devices;
for (const auto &item : gpu_mem_info_) {
devices.emplace_back(item.first);
}
std::sort(devices.begin(), devices.end());
for (const auto &device : devices) {
std::cout << "Device : " << device << " Peak Memory Usage : "
<< (gpu_mem_info_[device]->GetPeakUsage() >> 20) << " MiB"
<< std::endl;
}
}
} // namespace allocation
} // namespace memory
} // namespace paddle