You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
11 KiB
296 lines
11 KiB
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/mixed_vector.h"
|
|
#include "paddle/fluid/operators/math/concat_and_split.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T>
|
|
__global__ void ConcatKernel(T** inputs, const int* input_cols, int col_size,
|
|
const int output_rows, const int output_cols,
|
|
T* output) {
|
|
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int curr_segment = 0;
|
|
int curr_offset = input_cols[0];
|
|
for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
|
|
int curr_col_offset = input_cols[curr_segment + 1];
|
|
while (curr_col_offset <= tid_x) {
|
|
curr_offset = curr_col_offset;
|
|
++curr_segment;
|
|
curr_col_offset = input_cols[curr_segment + 1];
|
|
}
|
|
|
|
int local_col = tid_x - curr_offset;
|
|
int segment_width = curr_col_offset - curr_offset;
|
|
|
|
T* input_ptr = inputs[curr_segment];
|
|
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y)
|
|
output[tid_y * output_cols + tid_x] =
|
|
input_ptr[tid_y * segment_width + local_col];
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void ConcatKernel(T** inputs_data, const int fixed_in_col,
|
|
const int out_rows, const int out_cols,
|
|
T* output_data) {
|
|
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (; tid_x < out_cols; tid_x += blockDim.x * gridDim.x) {
|
|
int split = tid_x * 1.0 / fixed_in_col;
|
|
int in_offset = tid_x - split * fixed_in_col;
|
|
T* input_ptr = inputs_data[split];
|
|
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
for (; tid_y < out_rows; tid_y += blockDim.y * gridDim.y) {
|
|
output_data[tid_y * out_cols + tid_x] =
|
|
input_ptr[tid_y * fixed_in_col + in_offset];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SplitKernel(const T* input_data, const int in_row,
|
|
const int in_col, const int* out_cols,
|
|
int out_cols_size, T** outputs_data) {
|
|
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int curr_segment = 0;
|
|
int curr_offset = out_cols[0];
|
|
for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
|
|
int curr_col_offset = out_cols[curr_segment + 1];
|
|
while (curr_col_offset <= tid_x) {
|
|
curr_offset = curr_col_offset;
|
|
++curr_segment;
|
|
curr_col_offset = out_cols[curr_segment + 1];
|
|
}
|
|
|
|
int local_col = tid_x - curr_offset;
|
|
int segment_width = curr_col_offset - curr_offset;
|
|
T* output_ptr = outputs_data[curr_segment];
|
|
if (output_ptr != nullptr) {
|
|
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
|
|
output_ptr[tid_y * segment_width + local_col] =
|
|
input_data[tid_y * in_col + tid_x];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void SplitKernel(const T* input_data, const int in_row,
|
|
const int in_col, const int fixed_out_col,
|
|
T** outputs_data) {
|
|
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
|
|
int split = tid_x / fixed_out_col;
|
|
int in_offset = tid_x - split * fixed_out_col;
|
|
T* output_ptr = outputs_data[split];
|
|
if (output_ptr != nullptr) {
|
|
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
|
|
output_ptr[tid_y * fixed_out_col + in_offset] =
|
|
input_data[tid_y * in_col + tid_x];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* All tensors' dimension should be the same and the values of
|
|
* each dimension must be the same, except the axis dimension.
|
|
*/
|
|
template <typename T>
|
|
class ConcatFunctor<platform::CUDADeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
const std::vector<framework::Tensor>& input, int axis,
|
|
framework::Tensor* output) {
|
|
// TODO(zcd): Add input data validity checking
|
|
int in_num = input.size();
|
|
int in_row = 1;
|
|
auto dim_0 = input[0].dims();
|
|
for (int i = 0; i < axis; ++i) {
|
|
in_row *= dim_0[i];
|
|
}
|
|
int in_col = input[0].numel() / in_row;
|
|
int out_row = in_row, out_col = 0;
|
|
|
|
std::vector<const T*> inputs_data;
|
|
std::vector<int> inputs_col(in_num + 1);
|
|
inputs_data.reserve(in_num);
|
|
|
|
inputs_col[0] = 0;
|
|
bool sameShape = true;
|
|
for (int i = 0; i < in_num; ++i) {
|
|
int t_cols = input[i].numel() / in_row;
|
|
if (sameShape) {
|
|
if (t_cols != in_col) sameShape = false;
|
|
}
|
|
out_col += t_cols;
|
|
inputs_col[i + 1] = out_col;
|
|
inputs_data.emplace_back(input[i].data<T>());
|
|
}
|
|
|
|
// computation
|
|
// set the thread block and grid according to CurrentDeviceId
|
|
const int kThreadsPerBlock = 1024;
|
|
int block_cols = kThreadsPerBlock;
|
|
if (out_col < kThreadsPerBlock) { // block_cols is aligned by 32.
|
|
block_cols = ((out_col + 31) >> 5) << 5;
|
|
}
|
|
int block_rows = kThreadsPerBlock / block_cols;
|
|
dim3 block_size = dim3(block_cols, block_rows, 1);
|
|
|
|
int max_threads = context.GetMaxPhysicalThreadCount();
|
|
int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
|
|
|
|
int grid_cols =
|
|
std::min((out_col + block_cols - 1) / block_cols, max_blocks);
|
|
int grid_rows =
|
|
std::min(max_blocks / grid_cols, std::max(out_row / block_rows, 1));
|
|
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
|
|
|
|
auto tmp_dev_ins_data =
|
|
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
|
|
inputs_data.size() * sizeof(T*));
|
|
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
|
|
tmp_dev_ins_data->ptr(), platform::CPUPlace(),
|
|
static_cast<void*>(inputs_data.data()),
|
|
inputs_data.size() * sizeof(T*), context.stream());
|
|
T** dev_ins_data = reinterpret_cast<T**>(tmp_dev_ins_data->ptr());
|
|
|
|
if (sameShape) {
|
|
ConcatKernel<<<grid_size, block_size, 0, context.stream()>>>(
|
|
dev_ins_data, in_col, out_row, out_col, output->data<T>());
|
|
} else {
|
|
auto tmp_dev_ins_col_data =
|
|
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
|
|
inputs_col.size() * sizeof(int));
|
|
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
|
|
tmp_dev_ins_col_data->ptr(), platform::CPUPlace(),
|
|
static_cast<void*>(inputs_col.data()),
|
|
inputs_col.size() * sizeof(int), context.stream());
|
|
int* dev_ins_col_data = static_cast<int*>(tmp_dev_ins_col_data->ptr());
|
|
|
|
ConcatKernel<<<grid_size, block_size, 0, context.stream()>>>(
|
|
dev_ins_data, dev_ins_col_data, static_cast<int>(inputs_col.size()),
|
|
out_row, out_col, output->data<T>());
|
|
}
|
|
}
|
|
};
|
|
|
|
/*
|
|
* All tensors' dimension should be the same and the values of
|
|
* each dimension must be the same, except the axis dimension.
|
|
*/
|
|
template <typename T>
|
|
class SplitFunctor<platform::CUDADeviceContext, T> {
|
|
public:
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
const framework::Tensor& input,
|
|
const std::vector<const framework::Tensor*>& ref_inputs,
|
|
int axis, std::vector<framework::Tensor*>* outputs) {
|
|
// TODO(zcd): Add input data validity checking
|
|
int o_num = outputs->size();
|
|
int out_row = 1;
|
|
auto dim_0 = ref_inputs[0]->dims();
|
|
for (int i = 0; i < axis; ++i) {
|
|
out_row *= dim_0[i];
|
|
}
|
|
|
|
int out0_col = ref_inputs[0]->numel() / out_row;
|
|
int in_col = 0, in_row = out_row;
|
|
bool sameShape = true;
|
|
|
|
std::vector<T*> outputs_data(o_num);
|
|
std::vector<int> outputs_cols(o_num + 1);
|
|
|
|
outputs_cols[0] = 0;
|
|
for (int i = 0; i < o_num; ++i) {
|
|
int t_col = ref_inputs.at(i)->numel() / out_row;
|
|
if (sameShape) {
|
|
if (t_col != out0_col) sameShape = false;
|
|
}
|
|
in_col += t_col;
|
|
outputs_cols[i + 1] = in_col;
|
|
if (outputs->at(i) != nullptr) {
|
|
outputs_data[i] = outputs->at(i)->data<T>();
|
|
} else {
|
|
outputs_data[i] = nullptr;
|
|
}
|
|
}
|
|
|
|
// computation
|
|
const int kThreadsPerBlock = 1024;
|
|
int block_cols = kThreadsPerBlock;
|
|
if (in_col < kThreadsPerBlock) { // block_cols is aligned by 32.
|
|
block_cols = ((in_col + 31) >> 5) << 5;
|
|
}
|
|
int block_rows = kThreadsPerBlock / block_cols;
|
|
dim3 block_size = dim3(block_cols, block_rows, 1);
|
|
|
|
int max_threads = context.GetMaxPhysicalThreadCount();
|
|
int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
|
|
|
|
int grid_cols =
|
|
std::min((in_col + block_cols - 1) / block_cols, max_blocks);
|
|
int grid_rows =
|
|
std::min(max_blocks / grid_cols, std::max(out_row / block_rows, 1));
|
|
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
|
|
|
|
auto tmp_dev_outs_data =
|
|
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
|
|
outputs_data.size() * sizeof(T*));
|
|
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
|
|
tmp_dev_outs_data->ptr(), platform::CPUPlace(),
|
|
reinterpret_cast<void*>(outputs_data.data()),
|
|
outputs_data.size() * sizeof(T*), context.stream());
|
|
T** dev_out_gpu_data = reinterpret_cast<T**>(tmp_dev_outs_data->ptr());
|
|
|
|
if (sameShape) {
|
|
SplitKernel<<<grid_size, block_size, 0, context.stream()>>>(
|
|
input.data<T>(), in_row, in_col, out0_col, dev_out_gpu_data);
|
|
} else {
|
|
auto tmp_dev_ins_col_data =
|
|
platform::DeviceTemporaryAllocator::Instance().Get(context).Allocate(
|
|
outputs_cols.size() * sizeof(int));
|
|
memory::Copy(boost::get<platform::CUDAPlace>(context.GetPlace()),
|
|
tmp_dev_ins_col_data->ptr(), platform::CPUPlace(),
|
|
reinterpret_cast<void*>(outputs_cols.data()),
|
|
outputs_cols.size() * sizeof(int), context.stream());
|
|
int* dev_outs_col_data =
|
|
reinterpret_cast<int*>(tmp_dev_ins_col_data->ptr());
|
|
|
|
SplitKernel<<<grid_size, block_size, 0, context.stream()>>>(
|
|
input.data<T>(), in_row, in_col, dev_outs_col_data,
|
|
static_cast<int>(outputs_cols.size()), dev_out_gpu_data);
|
|
}
|
|
}
|
|
};
|
|
|
|
#define DEFINE_FUNCTOR(type) \
|
|
template class ConcatFunctor<platform::CUDADeviceContext, type>; \
|
|
template class SplitFunctor<platform::CUDADeviceContext, type>
|
|
|
|
FOR_ALL_TYPES(DEFINE_FUNCTOR);
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|