You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							146 lines
						
					
					
						
							5.5 KiB
						
					
					
				
			
		
		
	
	
							146 lines
						
					
					
						
							5.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/adagrad_op.h"
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| #include "paddle/fluid/operators/math/selected_rows_functor.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class AdagradOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Param"),
 | |
|                    "Input(Param) of AdagradOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Grad"),
 | |
|                    "Input(Grad) of AdagradOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Moment"),
 | |
|                    "Input(Moment) of AdagradOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
 | |
|                    "Input(LearningRate) of AdagradOp should not be null.");
 | |
| 
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
 | |
|                    "Output(ParamOut) of AdagradOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
 | |
|                    "Output(MomentOut) of AdagradOp should not be null.");
 | |
| 
 | |
|     auto lr_dims = ctx->GetInputDim("LearningRate");
 | |
|     PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
 | |
|                       "LearningRate should have one element");
 | |
|     auto param_dims = ctx->GetInputDim("Param");
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         param_dims, ctx->GetInputDim("Grad"),
 | |
|         "Param and Grad input of AdagradOp should have the same dimension.");
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         param_dims, ctx->GetInputDim("Moment"),
 | |
|         "Param and Moment input of AdagradOp should have the same dimension.");
 | |
| 
 | |
|     ctx->SetOutputDim("ParamOut", param_dims);
 | |
|     ctx->SetOutputDim("MomentOut", param_dims);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   AdagradOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("Param", "(Tensor) Input parameter");
 | |
|     AddInput("Grad", "(Tensor) Input gradient");
 | |
|     AddInput("Moment", "(Tensor) Second moment");
 | |
|     AddInput("LearningRate", "(Tensor) Learning rate");
 | |
| 
 | |
|     AddOutput("ParamOut", "(Tensor) Output parameter");
 | |
|     AddOutput("MomentOut", "(Tensor) Output second moment");
 | |
| 
 | |
|     AddAttr<float>("epsilon",
 | |
|                    "(float, default 1.0e-6) "
 | |
|                    "Constant for numerical stability")
 | |
|         .SetDefault(1.0e-6f);
 | |
|     AddComment(R"DOC(
 | |
| 
 | |
| Adaptive Gradient Algorithm (Adagrad).
 | |
| 
 | |
| The update is done as follows:
 | |
| 
 | |
| $$moment\_out = moment + grad * grad \\
 | |
| param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
 | |
| $$
 | |
| 
 | |
| The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
 | |
| does not have the epsilon attribute. It is added here in our implementation
 | |
| as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
 | |
| for numerical stability to avoid the division by zero error.
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| namespace {
 | |
| size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
 | |
|   return std::find(rows.begin(), rows.end(), value) - rows.begin();
 | |
| }
 | |
| }  // namespace
 | |
| 
 | |
| template <typename T>
 | |
| struct SparseAdagradFunctor<platform::CPUDeviceContext, T> {
 | |
|   void operator()(const platform::CPUDeviceContext& context,
 | |
|                   const framework::SelectedRows& grad,
 | |
|                   const framework::Tensor& learning_rate, T epsilon,
 | |
|                   framework::Tensor* moment, framework::Tensor* param) {
 | |
|     // 1. g_m.rows = set(g.rows)
 | |
|     auto grad_width = grad.value().dims()[1];
 | |
|     math::scatter::MergeAdd<platform::CPUDeviceContext, T> merge_func;
 | |
|     auto grad_merge = merge_func(context, grad);
 | |
|     auto& merge_rows = grad_merge.rows();
 | |
|     auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();
 | |
| 
 | |
|     // 2. m += g_m * g_m
 | |
|     math::scatter::Mul<platform::CPUDeviceContext, T> sqare_func;
 | |
|     auto grad_square = sqare_func(context, grad_merge, grad_merge);
 | |
| 
 | |
|     math::SelectedRowsAddToTensor<platform::CPUDeviceContext, T> functor;
 | |
|     functor(context, grad_square, moment);
 | |
| 
 | |
|     // 3. update parameter
 | |
|     auto* lr = learning_rate.data<T>();
 | |
|     auto* param_data = param->data<T>();
 | |
|     auto* moment_data = moment->data<T>();
 | |
| 
 | |
|     for (size_t i = 0; i < merge_rows.size(); i++) {
 | |
|       for (int64_t j = 0; j < grad_width; j++) {
 | |
|         param_data[merge_rows[i] * grad_width + j] -=
 | |
|             lr[0] * grad_merge_data[i * grad_width + j] /
 | |
|             (std::sqrt(moment_data[merge_rows[i] * grad_width + j]) + epsilon);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template struct SparseAdagradFunctor<platform::CPUDeviceContext, float>;
 | |
| template struct SparseAdagradFunctor<platform::CPUDeviceContext, double>;
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     adagrad, ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, double>);
 |