You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							68 lines
						
					
					
						
							2.8 KiB
						
					
					
				
			
		
		
	
	
							68 lines
						
					
					
						
							2.8 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class AdamaxOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
 | |
|     auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
 | |
|     auto inf_norm_out_tensor = ctx.Output<framework::Tensor>("InfNormOut");
 | |
| 
 | |
|     param_out_tensor->mutable_data<T>(ctx.GetPlace());
 | |
|     moment_out_tensor->mutable_data<T>(ctx.GetPlace());
 | |
|     inf_norm_out_tensor->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
 | |
|     T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
 | |
|     T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
 | |
| 
 | |
|     auto param = framework::EigenVector<T>::Flatten(
 | |
|         *ctx.Input<framework::Tensor>("Param"));
 | |
|     auto grad = framework::EigenVector<T>::Flatten(
 | |
|         *ctx.Input<framework::Tensor>("Grad"));
 | |
|     auto moment = framework::EigenVector<T>::Flatten(
 | |
|         *ctx.Input<framework::Tensor>("Moment"));
 | |
|     auto inf_norm = framework::EigenVector<T>::Flatten(
 | |
|         *ctx.Input<framework::Tensor>("InfNorm"));
 | |
|     auto lr = framework::EigenVector<T>::Flatten(
 | |
|         *ctx.Input<framework::Tensor>("LearningRate"));
 | |
|     auto beta1_pow = framework::EigenVector<T>::Flatten(
 | |
|         *ctx.Input<framework::Tensor>("Beta1Pow"));
 | |
|     auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
 | |
|     auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
 | |
|     auto inf_norm_out =
 | |
|         framework::EigenVector<T>::Flatten(*inf_norm_out_tensor);
 | |
|     auto* place = ctx.template device_context<DeviceContext>().eigen_device();
 | |
| 
 | |
|     moment_out.device(*place) = beta1 * moment + (1 - beta1) * grad;
 | |
|     inf_norm_out.device(*place) =
 | |
|         grad.abs().cwiseMax((beta2 * inf_norm) + epsilon);
 | |
|     auto lr_t = lr / (1 - beta1_pow);
 | |
|     Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
 | |
|     param_out.device(*place) =
 | |
|         param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |