You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							234 lines
						
					
					
						
							8.8 KiB
						
					
					
				
			
		
		
	
	
							234 lines
						
					
					
						
							8.8 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| #include <algorithm>
 | |
| #include "paddle/fluid/framework/executor.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class ConditionalOp : public framework::OperatorBase {
 | |
|  public:
 | |
|   ConditionalOp(const std::string &type,
 | |
|                 const framework::VariableNameMap &inputs,
 | |
|                 const framework::VariableNameMap &outputs,
 | |
|                 const framework::AttributeMap &attrs)
 | |
|       : OperatorBase(type, inputs, outputs, attrs) {}
 | |
| 
 | |
|  protected:
 | |
|   std::vector<const framework::LoDTensor *> InputTensors(
 | |
|       const framework::Scope &scope) const {
 | |
|     std::vector<const framework::LoDTensor *> retv;
 | |
|     auto xs = Inputs("X");
 | |
|     retv.resize(xs.size(), nullptr);
 | |
|     std::transform(
 | |
|         xs.begin(), xs.end(), retv.begin(),
 | |
|         [&scope](const std::string &var_name) -> const framework::LoDTensor * {
 | |
|           auto *var = scope.FindVar(var_name);
 | |
|           PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
 | |
|           return &var->Get<framework::LoDTensor>();
 | |
|         });
 | |
|     return retv;
 | |
|   }
 | |
| 
 | |
|   bool ScalarCondition(
 | |
|       const std::vector<const framework::LoDTensor *> &ips) const {
 | |
|     if (!(ips.size() == 1UL && ips[0]->IsInitialized())) {
 | |
|       PADDLE_THROW("should have one initialized input as condition");
 | |
|     }
 | |
|     if (!(ips[0]->type().hash_code() == typeid(bool).hash_code() &&
 | |
|           ips[0]->numel() == 1)) {
 | |
|       PADDLE_THROW(
 | |
|           "condition input's data type should be bool, "
 | |
|           "numel should be 1, actual numel is %d",
 | |
|           ips[0]->numel());
 | |
|     }
 | |
|     return ips[0]->data<bool>()[0];
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConditionalBlockOp : public ConditionalOp {
 | |
|  public:
 | |
|   ConditionalBlockOp(const std::string &type,
 | |
|                      const framework::VariableNameMap &inputs,
 | |
|                      const framework::VariableNameMap &outputs,
 | |
|                      const framework::AttributeMap &attrs)
 | |
|       : ConditionalOp(type, inputs, outputs, attrs) {}
 | |
| 
 | |
|  private:
 | |
|   void RunImpl(const framework::Scope &scope,
 | |
|                const platform::Place &dev_place) const override {
 | |
|     auto xs = InputTensors(scope);
 | |
| 
 | |
|     bool need_run;
 | |
|     if (Attr<bool>("is_scalar_condition")) {
 | |
|       need_run = ScalarCondition(xs);
 | |
|     } else {
 | |
|       need_run = std::all_of(
 | |
|           xs.begin(), xs.end(),
 | |
|           [](const framework::LoDTensor *t) { return t->numel() != 0; });
 | |
|     }
 | |
| 
 | |
|     if (need_run) {
 | |
|       auto *scope_var = scope.FindVar(Output("Scope"));
 | |
|       PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
 | |
|       auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
 | |
|       scopes->resize(1);
 | |
|       scopes->front() = &scope.NewScope();
 | |
|       auto &cur_scope = *scopes->front();
 | |
| 
 | |
|       framework::Executor exec(dev_place);
 | |
|       auto *block = Attr<framework::BlockDesc *>("sub_block");
 | |
|       exec.Run(*block->Program(), &cur_scope, block->ID(), false);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X",
 | |
|              "The conditional variable of this operator. If X is empty, the "
 | |
|              "whole sub-block will not be executed.")
 | |
|         .AsDuplicable();
 | |
|     AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
 | |
|     AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
 | |
|     AddOutput("Scope",
 | |
|               "(std::vector<Scope*>) The step scope of conditional block. To "
 | |
|               "unify the conditional block, rnn and while op, the type of "
 | |
|               "scope is std::vector<Scope*>");
 | |
|     AddAttr<framework::BlockDesc *>(
 | |
|         "sub_block", "The step block of conditional block operator");
 | |
|     AddAttr<bool>("is_scalar_condition",
 | |
|                   "the input X is used as scalar "
 | |
|                   "condition")
 | |
|         .SetDefault(false);
 | |
|     AddComment(R"DOC(Conditional block operator
 | |
| 
 | |
| Run the sub-block if X is not empty. Params is the other inputs and Out is the
 | |
| outputs of the sub-block.
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConditionalBlockGradOp : public ConditionalOp {
 | |
|  public:
 | |
|   ConditionalBlockGradOp(const std::string &type,
 | |
|                          const framework::VariableNameMap &inputs,
 | |
|                          const framework::VariableNameMap &outputs,
 | |
|                          const framework::AttributeMap &attrs)
 | |
|       : ConditionalOp(type, inputs, outputs, attrs) {}
 | |
| 
 | |
|  private:
 | |
|   void RunImpl(const framework::Scope &scope,
 | |
|                const platform::Place &dev_place) const override {
 | |
|     auto xs = this->InputTensors(scope);
 | |
| 
 | |
|     bool need_run;
 | |
|     if (Attr<bool>("is_scalar_condition")) {
 | |
|       need_run = ScalarCondition(xs);
 | |
|     } else {
 | |
|       need_run = std::all_of(
 | |
|           xs.begin(), xs.end(),
 | |
|           [](const framework::LoDTensor *t) { return t->numel() != 0; });
 | |
|     }
 | |
| 
 | |
|     if (need_run) {
 | |
|       auto *scope_var = scope.FindVar(Input("Scope"));
 | |
|       PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
 | |
|       auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
 | |
|       framework::Scope &cur_scope = *scopes[0];
 | |
| 
 | |
|       framework::Executor exec(dev_place);
 | |
|       auto *block = Attr<framework::BlockDesc *>("sub_block");
 | |
|       exec.Run(*block->Program(), &cur_scope, block->ID(), false);
 | |
| 
 | |
|       AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("Params"),
 | |
|                                   Outputs(framework::GradVarName("Params")));
 | |
| 
 | |
|       AssignLocalGradientToGlobal(dev_place, cur_scope, Inputs("X"),
 | |
|                                   Outputs(framework::GradVarName("X")));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   void AssignLocalGradientToGlobal(
 | |
|       const platform::Place &place, const framework::Scope &cur_scope,
 | |
|       const std::vector<std::string> &p_names,
 | |
|       const std::vector<std::string> &pg_names) const {
 | |
|     for (size_t i = 0; i < p_names.size(); ++i) {
 | |
|       auto out_grad_name = pg_names[i];
 | |
|       auto in_grad_name = framework::GradVarName(p_names[i]);
 | |
|       auto *in_var = cur_scope.FindVar(in_grad_name);
 | |
|       if (in_var == nullptr) {
 | |
|         continue;
 | |
|       }
 | |
|       auto new_in_grad_name = cur_scope.Rename(in_grad_name);
 | |
|       auto assign = framework::OpRegistry::CreateOp(
 | |
|           "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
 | |
|           framework::AttributeMap{});
 | |
|       assign->Run(cur_scope, place);
 | |
|       cur_scope.Rename(new_in_grad_name, in_grad_name);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConditionalBlockGradInferShape : public framework::InferShapeBase {
 | |
|  public:
 | |
|   void operator()(framework::InferShapeContext *context) const override {
 | |
|     PADDLE_ENFORCE(context->HasInputs("X"));
 | |
|     if (context->HasInputs("Params")) {
 | |
|       PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
 | |
|       context->SetOutputsDim(framework::GradVarName("Params"),
 | |
|                              context->GetInputsDim("Params"));
 | |
|     }
 | |
|     PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
 | |
|     context->SetOutputsDim(framework::GradVarName("X"),
 | |
|                            context->GetInputsDim("X"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
 | |
|  public:
 | |
|   using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
 | |
| 
 | |
|  protected:
 | |
|   std::unique_ptr<framework::OpDesc> Apply() const override {
 | |
|     auto grad_op = new framework::OpDesc();
 | |
|     grad_op->SetType("conditional_block_grad");
 | |
|     grad_op->SetInput("X", Input("X"));
 | |
|     grad_op->SetInput("Params", Input("Params"));
 | |
|     grad_op->SetInput("Out", Output("Out"));
 | |
|     grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
 | |
|     grad_op->SetInput("Scope", Output("Scope"));
 | |
|     grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
 | |
|     grad_op->SetOutput(framework::GradVarName("Params"),
 | |
|                        InputGrad("Params", false));
 | |
|     grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
 | |
|     grad_op->SetAttr("is_scalar_condition", GetAttr("is_scalar_condition"));
 | |
|     return std::unique_ptr<framework::OpDesc>(grad_op);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
 | |
|                   ops::ConditionalBlockOpProtoMaker,
 | |
|                   ops::ConditionalBlockGradMaker);
 | |
| REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
 | |
|                   ops::ConditionalBlockGradInferShape);
 |