You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							112 lines
						
					
					
						
							4.0 KiB
						
					
					
				
			
		
		
	
	
							112 lines
						
					
					
						
							4.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/cross_entropy_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
 | |
|                                            const int64_t* label, const int N,
 | |
|                                            const int D) {
 | |
|   for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
 | |
|        i += blockDim.x * gridDim.x) {
 | |
|     int idx = i * D + label[i];
 | |
|     dX[idx] = -dY[i] / X[idx];
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
 | |
|                                                const T* label, const int N,
 | |
|                                                const int D) {
 | |
|   int ids = blockIdx.x * blockDim.x + threadIdx.x;
 | |
|   if (ids < N * D) {
 | |
|     int row_ids = ids / D;
 | |
|     dX[ids] = -label[ids] * dY[row_ids] / X[ids];
 | |
|   }
 | |
| }
 | |
| }  // namespace
 | |
| 
 | |
| template <typename T>
 | |
| class CrossEntropyOpCUDAKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | |
|                    "This kernel only runs on GPU device.");
 | |
|     const Tensor* x = ctx.Input<Tensor>("X");
 | |
|     const Tensor* label = ctx.Input<Tensor>("Label");
 | |
|     Tensor* y = ctx.Output<Tensor>("Y");
 | |
|     y->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     math::CrossEntropyFunctor<platform::CUDADeviceContext, T>()(
 | |
|         ctx.template device_context<platform::CUDADeviceContext>(), y, x, label,
 | |
|         ctx.Attr<bool>("soft_label"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | |
|                    "This kernel only runs on GPU device.");
 | |
| 
 | |
|     const Tensor* x = ctx.Input<Tensor>("X");
 | |
|     const Tensor* label = ctx.Input<Tensor>("Label");
 | |
|     Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
 | |
|     dx->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     const T* dy_data =
 | |
|         ctx.Input<Tensor>(framework::GradVarName("Y"))->data<T>();
 | |
|     T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
 | |
|     const T* x_data = x->data<T>();
 | |
| 
 | |
|     int64_t batch_size = x->dims()[0];
 | |
|     int64_t class_num = x->dims()[1];
 | |
| 
 | |
|     int block = 512;
 | |
|     int grid = (batch_size * class_num + block - 1) / block;
 | |
| 
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto stream = dev_ctx.stream();
 | |
| 
 | |
|     if (ctx.Attr<bool>("soft_label")) {
 | |
|       auto* label_data = label->data<T>();
 | |
|       SoftCrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
 | |
|           dx_data, dy_data, x_data, label_data, batch_size, class_num);
 | |
|     } else {
 | |
|       math::SetConstant<platform::CUDADeviceContext, T> functor;
 | |
|       functor(dev_ctx, dx, 0);
 | |
|       auto* label_data = label->data<int64_t>();
 | |
|       grid = (batch_size + block - 1) / block;
 | |
|       CrossEntropyGradientKernel<T><<<grid, block, 0, stream>>>(
 | |
|           dx_data, dy_data, x_data, label_data, batch_size, class_num);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP_CUDA_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel<float>,
 | |
|                         ops::CrossEntropyOpCUDAKernel<double>);
 | |
| REGISTER_OP_CUDA_KERNEL(cross_entropy_grad,
 | |
|                         ops::CrossEntropyGradientOpCUDAKernel<float>,
 | |
|                         ops::CrossEntropyGradientOpCUDAKernel<double>);
 |