You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							140 lines
						
					
					
						
							5.0 KiB
						
					
					
				
			
		
		
	
	
							140 lines
						
					
					
						
							5.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "paddle/fluid/operators/elementwise_op_function.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename T>
 | |
| struct DivFunctor {
 | |
|   inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ElementwiseDivKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     using Tensor = framework::Tensor;
 | |
| 
 | |
|     auto* x = ctx.Input<Tensor>("X");
 | |
|     auto* y = ctx.Input<Tensor>("Y");
 | |
|     auto* z = ctx.Output<Tensor>("Out");
 | |
|     z->mutable_data<T>(ctx.GetPlace());
 | |
|     int axis = ctx.Attr<int>("axis");
 | |
|     ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
 | |
|                                                           DivFunctor<T>(), z);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct ElementwiseDivGradFunctor {
 | |
|   template <typename Device, typename X, typename Y, typename Z, typename dX,
 | |
|             typename dY, typename dZ>
 | |
|   void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
 | |
|     auto y_e = framework::EigenVector<T>::Flatten(*y);
 | |
|     auto z_e = framework::EigenVector<T>::Flatten(*z);
 | |
|     auto dz_e = framework::EigenVector<T>::Flatten(*dz);
 | |
| 
 | |
|     if (dx) {
 | |
|       auto dx_e = framework::EigenVector<T>::Flatten(*dx);
 | |
|       dx_e.device(d) = dz_e / y_e;
 | |
|     }
 | |
| 
 | |
|     if (dy) {
 | |
|       auto dy_e = framework::EigenVector<T>::Flatten(*dy);
 | |
|       dy_e.device(d) = -1.0 * dz_e * z_e / y_e;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct ElementwiseDivBroadCastGradFunctor {
 | |
|   template <typename Device, typename X, typename Y, typename Z, typename dX,
 | |
|             typename dY, typename dZ, typename Pre, typename N>
 | |
|   void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
 | |
|     auto x_e = framework::EigenVector<T>::Flatten(*x);
 | |
|     auto y_e = framework::EigenVector<T>::Flatten(*y);
 | |
|     auto dz_e = framework::EigenVector<T>::Flatten(*dz);
 | |
| 
 | |
|     auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
 | |
|                          .broadcast(Eigen::DSizes<int, 2>(pre, 1))
 | |
|                          .reshape(Eigen::DSizes<int, 1>(x_e.size()));
 | |
| 
 | |
|     if (dx) {
 | |
|       auto dx_e = framework::EigenVector<T>::Flatten(*dx);
 | |
|       dx_e.device(d) = dz_e / y_e_bcast;
 | |
|     }
 | |
| 
 | |
|     if (dy) {
 | |
|       auto dy_e = framework::EigenVector<T>::Flatten(*dy);
 | |
|       dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
 | |
|                            .reshape(Eigen::DSizes<int, 2>(pre, n))
 | |
|                            .sum(Eigen::array<int, 1>{{0}});
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct ElementwiseDivBroadCast2GradFunctor {
 | |
|   template <typename Device, typename X, typename Y, typename Z, typename dX,
 | |
|             typename dY, typename dZ, typename Pre, typename N, typename Post>
 | |
|   void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
 | |
|                   Post post) {
 | |
|     auto x_e = framework::EigenVector<T>::Flatten(*x);
 | |
|     auto y_e = framework::EigenVector<T>::Flatten(*y);
 | |
|     auto dz_e = framework::EigenVector<T>::Flatten(*dz);
 | |
| 
 | |
|     auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
 | |
|                          .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
 | |
|                          .reshape(Eigen::DSizes<int, 1>(x_e.size()));
 | |
|     if (dx) {
 | |
|       auto dx_e = framework::EigenVector<T>::Flatten(*dx);
 | |
|       dx_e.device(d) = dz_e / y_e_bcast;
 | |
|     }
 | |
| 
 | |
|     if (dy) {
 | |
|       auto dy_e = framework::EigenVector<T>::Flatten(*dy);
 | |
|       dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
 | |
|                            .reshape(Eigen::DSizes<int, 3>(pre, n, post))
 | |
|                            .sum(Eigen::array<int, 2>{{0, 2}});
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ElementwiseDivGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     using Tensor = framework::Tensor;
 | |
| 
 | |
|     auto* x = ctx.Input<Tensor>("X");
 | |
|     auto* y = ctx.Input<Tensor>("Y");
 | |
|     auto* out = ctx.Input<Tensor>("Out");
 | |
|     auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
 | |
|     auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
 | |
|     auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
 | |
|     int axis = ctx.Attr<int>("axis");
 | |
|     ElementwiseGradCompute<DeviceContext, T, ElementwiseDivGradFunctor<T>,
 | |
|                            ElementwiseDivBroadCastGradFunctor<T>,
 | |
|                            ElementwiseDivBroadCast2GradFunctor<T>>(
 | |
|         ctx, x, y, out, dout, axis, dx, dy);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |