You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							77 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							77 lines
						
					
					
						
							2.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/l1_norm_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| 
 | |
| class L1NormOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
 | |
| 
 | |
|     ctx->SetOutputDim("Out", {1});
 | |
|   }
 | |
| };
 | |
| 
 | |
| class L1NormGradOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | |
|                    "Input(Out@GRAD) should be not null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
 | |
|                    "Output(X@GRAD) should be not null.");
 | |
| 
 | |
|     ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| class L1NormOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   L1NormOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : framework::OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X", "(Tensor) The input of l1_norm op.");
 | |
|     AddOutput("Out", "(Scalar) The output of l1_norm op.");
 | |
|     AddComment(R"DOC(
 | |
| L1 Norm Operator.
 | |
| 
 | |
| Computes the L1 norm of a tensor.
 | |
| 
 | |
| $$Out = \sum{|X|}$$
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP(l1_norm, ops::L1NormOp, ops::L1NormOpMaker, l1_norm_grad,
 | |
|             ops::L1NormGradOp);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     l1_norm, ops::L1NormKernel<paddle::platform::CPUDeviceContext, float>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     l1_norm_grad,
 | |
|     ops::L1NormGradKernel<paddle::platform::CPUDeviceContext, float>);
 |