You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							66 lines
						
					
					
						
							2.4 KiB
						
					
					
				
			
		
		
	
	
							66 lines
						
					
					
						
							2.4 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| // Out = sum(abs(X))
 | |
| template <typename DeviceContext, typename T>
 | |
| class L1NormKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &context) const override {
 | |
|     const framework::Tensor *X = context.Input<framework::Tensor>("X");
 | |
|     framework::Tensor *Out = context.Output<framework::Tensor>("Out");
 | |
|     Out->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     auto x = framework::EigenVector<T>::Flatten(*X);
 | |
|     auto out = framework::EigenScalar<T>::From(*Out);
 | |
|     auto &place =
 | |
|         *context.template device_context<DeviceContext>().eigen_device();
 | |
| 
 | |
|     out.device(place) = x.abs().sum();
 | |
|   }
 | |
| };
 | |
| 
 | |
| // dX = dout * sign(X)
 | |
| template <typename DeviceContext, typename T>
 | |
| class L1NormGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &context) const override {
 | |
|     const framework::Tensor *x = context.Input<framework::Tensor>("X");
 | |
|     const framework::Tensor *d_out =
 | |
|         context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     PADDLE_ENFORCE(d_out->numel() == 1, "L1 Norm Gradient should be scalar");
 | |
|     framework::Tensor *dx =
 | |
|         context.Output<framework::Tensor>(framework::GradVarName("X"));
 | |
|     dx->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     auto x_eigen = framework::EigenVector<T>::Flatten(*x);
 | |
|     auto d_out_eigen = framework::EigenVector<T>::Flatten(*d_out);
 | |
|     auto dx_eigen = framework::EigenVector<T>::Flatten(*dx);
 | |
|     auto &place =
 | |
|         *context.template device_context<DeviceContext>().eigen_device();
 | |
| 
 | |
|     Eigen::DSizes<int, 1> x_dsize(x->numel());
 | |
|     dx_eigen.device(place) = d_out_eigen.broadcast(x_dsize) * x_eigen.sign();
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |