You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							67 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							67 lines
						
					
					
						
							2.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class LabelSmoothKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* out_t = ctx.Output<framework::LoDTensor>("Out");
 | |
|     auto* in_t = ctx.Input<framework::LoDTensor>("X");
 | |
|     auto* dist_t = ctx.Input<framework::Tensor>("PriorDist");
 | |
|     auto label_dim = in_t->dims()[1];
 | |
|     out_t->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto epsilon = ctx.Attr<float>("epsilon");
 | |
|     auto out = framework::EigenVector<T>::Flatten(*out_t);
 | |
|     auto in = framework::EigenVector<T>::Flatten(*in_t);
 | |
|     auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
 | |
|     if (dist_t) {
 | |
|       auto dist = framework::EigenVector<T>::Flatten(*dist_t);
 | |
|       out.device(dev) =
 | |
|           static_cast<T>(1 - epsilon) * in +
 | |
|           epsilon * dist.broadcast(Eigen::DSizes<int, 1>(in_t->numel()));
 | |
|     } else {
 | |
|       out.device(dev) = static_cast<T>(1 - epsilon) * in +
 | |
|                         static_cast<T>(epsilon / label_dim);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class LabelSmoothGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | |
|     d_in_t->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
 | |
|     auto d_in = framework::EigenVector<T>::Flatten(*d_in_t);
 | |
| 
 | |
|     auto epsilon = ctx.Attr<float>("epsilon");
 | |
|     auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
 | |
|     d_in.device(dev) = static_cast<T>(1 - epsilon) * d_out;
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |