You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							153 lines
						
					
					
						
							6.7 KiB
						
					
					
				
			
		
		
	
	
							153 lines
						
					
					
						
							6.7 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/logical_op.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| template <typename OpComment>
 | |
| class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   BinaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     OpComment comment;
 | |
|     AddInput("X",
 | |
|              string::Sprintf("(LoDTensor) Left hand operand of %s operator",
 | |
|                              comment.type));
 | |
|     AddInput("Y",
 | |
|              string::Sprintf("(LoDTensor) Right hand operand of %s operator",
 | |
|                              comment.type));
 | |
|     AddOutput("Out", string::Sprintf(
 | |
|                          "(LoDTensor) n-dim bool tensor. Each element is %s",
 | |
|                          comment.equation));
 | |
|     AddComment(string::Sprintf(R"DOC(%s Operator
 | |
| 
 | |
| It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean tensors.
 | |
| Each element of Out is calculated by %s
 | |
| )DOC",
 | |
|                                comment.type, comment.equation));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename OpComment>
 | |
| class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   UnaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     OpComment comment;
 | |
|     AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator",
 | |
|                                   comment.type));
 | |
|     AddOutput("Out", string::Sprintf(
 | |
|                          "(LoDTensor) n-dim bool tensor. Each element is %s",
 | |
|                          comment.equation));
 | |
|     AddComment(string::Sprintf(R"DOC(%s Operator
 | |
| 
 | |
| It operates element-wise on X, and returns the Out. X and Out are N-dim boolean tensors.
 | |
| Each element of Out is calculated by %s
 | |
| )DOC",
 | |
|                                comment.type, comment.equation));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename OpComment>
 | |
| class BinaryLogicalOpInferShape : public framework::InferShapeBase {
 | |
|  public:
 | |
|   void operator()(framework::InferShapeContext *context) const override {
 | |
|     OpComment comment;
 | |
|     PADDLE_ENFORCE(context->HasInput("X"),
 | |
|                    "Input(X) of %s operator must not be null", comment.type);
 | |
|     PADDLE_ENFORCE(context->HasInput("Y"),
 | |
|                    "Input(Y) of %s operator must not be null", comment.type);
 | |
|     auto dim_x = context->GetInputDim("X");
 | |
|     auto dim_y = context->GetInputDim("Y");
 | |
|     PADDLE_ENFORCE_EQ(framework::product(dim_x), framework::product(dim_y),
 | |
|                       "The number of elements in X and Y should be same");
 | |
| 
 | |
|     context->SetOutputDim("Out", context->GetInputDim("X"));
 | |
|     context->ShareLoD("X", "Out");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename OpComment>
 | |
| class UnaryLogicalOpInferShape : public framework::InferShapeBase {
 | |
|  public:
 | |
|   void operator()(framework::InferShapeContext *context) const override {
 | |
|     OpComment comment;
 | |
|     PADDLE_ENFORCE(context->HasInput("X"),
 | |
|                    "Input(X) of %s operator must not be null", comment.type);
 | |
|     auto dim_x = context->GetInputDim("X");
 | |
| 
 | |
|     context->SetOutputDim("Out", context->GetInputDim("X"));
 | |
|     context->ShareLoD("X", "Out");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class LogicalOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext &ctx) const override {
 | |
|     framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
 | |
|     // LogicalOp kernel's device type is decided by input tensor place
 | |
|     kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
 | |
|     return kt;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| #define REGISTER_BINARY_LOGICAL_OP(op_type, _equation)                     \
 | |
|   struct _##op_type##Comment {                                             \
 | |
|     static char type[];                                                    \
 | |
|     static char equation[];                                                \
 | |
|   };                                                                       \
 | |
|   char _##op_type##Comment::type[]{#op_type};                              \
 | |
|   char _##op_type##Comment::equation[]{_equation};                         \
 | |
|   REGISTER_OPERATOR(                                                       \
 | |
|       op_type, ::paddle::operators::LogicalOp,                             \
 | |
|       ::paddle::operators::BinaryLogicalOpProtoMaker<_##op_type##Comment>, \
 | |
|       ::paddle::operators::BinaryLogicalOpInferShape<_##op_type##Comment>, \
 | |
|       ::paddle::framework::EmptyGradOpMaker);
 | |
| 
 | |
| #define REGISTER_UNARY_LOGICAL_OP(op_type, _equation)                     \
 | |
|   struct _##op_type##Comment {                                            \
 | |
|     static char type[];                                                   \
 | |
|     static char equation[];                                               \
 | |
|   };                                                                      \
 | |
|   char _##op_type##Comment::type[]{#op_type};                             \
 | |
|   char _##op_type##Comment::equation[]{_equation};                        \
 | |
|   REGISTER_OPERATOR(                                                      \
 | |
|       op_type, ::paddle::operators::LogicalOp,                            \
 | |
|       ::paddle::operators::UnaryLogicalOpProtoMaker<_##op_type##Comment>, \
 | |
|       ::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \
 | |
|       ::paddle::framework::EmptyGradOpMaker);
 | |
| 
 | |
| REGISTER_BINARY_LOGICAL_OP(logical_and, "$$Out = X \\&\\& Y$$");
 | |
| REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU,
 | |
|                                paddle::operators::LogicalAndFunctor);
 | |
| REGISTER_BINARY_LOGICAL_OP(logical_or, "$$Out = X || Y$$");
 | |
| REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU,
 | |
|                                paddle::operators::LogicalOrFunctor);
 | |
| REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$");
 | |
| REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU,
 | |
|                               paddle::operators::LogicalNotFunctor);
 | |
| REGISTER_BINARY_LOGICAL_OP(logical_xor,
 | |
|                            "$$Out = (X || Y) \\, \\&\\& \\, !(X \\&\\& Y)$$");
 | |
| REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU,
 | |
|                                paddle::operators::LogicalXorFunctor);
 |