You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							108 lines
						
					
					
						
							4.0 KiB
						
					
					
				
			
		
		
	
	
							108 lines
						
					
					
						
							4.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/lstm_unit_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class LstmUnitOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("C_prev"),
 | |
|                    "Input(C_prev) of LSTM should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("C"),
 | |
|                    "Output(C) of LSTM should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("H"),
 | |
|                    "Output(H) of LSTM should not be null.");
 | |
| 
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     auto c_prev_dims = ctx->GetInputDim("C_prev");
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
 | |
|     PADDLE_ENFORCE_EQ(x_dims[0], c_prev_dims[0],
 | |
|                       "Batch size of inputs and states must be equal");
 | |
|     PADDLE_ENFORCE_EQ(x_dims[1], c_prev_dims[1] * 4,
 | |
|                       "Dimension of FC should equal to prev state * 4");
 | |
| 
 | |
|     int b_size = c_prev_dims[0];  // batch size
 | |
|     int s_dim = c_prev_dims[1];   // state dim
 | |
|     ctx->SetOutputDim("C", {b_size, s_dim});
 | |
|     ctx->SetOutputDim("H", {b_size, s_dim});
 | |
|   }
 | |
| };
 | |
| 
 | |
| class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   LstmUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X",
 | |
|              "Lstm unit only applies non-linear activations, please make sure"
 | |
|              "that linear tranformation has already been applied to `X`. "
 | |
|              "Linear tranformation can be applied by adding a `fc` layer");
 | |
|     AddInput(
 | |
|         "C_prev",
 | |
|         "The cell state tensor of last time-step in the Lstm Unit operator.");
 | |
|     AddOutput("C", "The cell tensor of Lstm Unit operator.");
 | |
|     AddOutput("H", "The hidden state tensor of Lstm Unit operator.");
 | |
|     AddAttr<float>("forget_bias",
 | |
|                    "(float, default 0.0) "
 | |
|                    "The forget bias of Lstm Unit.")
 | |
|         .SetDefault(0.0);
 | |
|     AddComment(R"DOC(
 | |
| Lstm Unit Operator
 | |
| 
 | |
| Equation:
 | |
| 
 | |
| $$
 | |
| i, f, o, j = split(X) \\
 | |
| C = C_{prev} * sigm(f + forget\_bias) + sigm(i) * tanh(j) \\
 | |
| H = C * sigm(o)
 | |
| $$
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class LstmUnitGradOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("C")),
 | |
|                    "Input(C@GRAD) should not be null");
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("H")),
 | |
|                    "Input(H@GRAD) should not be null");
 | |
|     ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | |
|     ctx->SetOutputDim(framework::GradVarName("C_prev"),
 | |
|                       ctx->GetInputDim("C_prev"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP(lstm_unit, ops::LstmUnitOp, ops::LstmUnitOpMaker, lstm_unit_grad,
 | |
|             ops::LstmUnitGradOp);
 | |
| REGISTER_OP_CPU_KERNEL(lstm_unit,
 | |
|                        ops::LstmUnitKernel<paddle::platform::CPUPlace, float>,
 | |
|                        ops::LstmUnitKernel<paddle::platform::CPUPlace, double>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     lstm_unit_grad, ops::LstmUnitGradKernel<paddle::platform::CPUPlace, float>,
 | |
|     ops::LstmUnitGradKernel<paddle::platform::CPUPlace, double>);
 |