You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							152 lines
						
					
					
						
							4.7 KiB
						
					
					
				
			
		
		
	
	
							152 lines
						
					
					
						
							4.7 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| /* Acknowledgement: the following code is strongly inspired by
 | |
| https://github.com/caffe2/caffe2/blob/master/caffe2/operators/lstm_unit_op.h
 | |
| */
 | |
| 
 | |
| #pragma once
 | |
| #include "glog/logging.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| 
 | |
| template <typename T>
 | |
| inline T sigmoid(T x) {
 | |
|   return 1. / (1. + exp(-x));
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline T tanh(T x) {
 | |
|   return 2. * sigmoid(2. * x) - 1.;
 | |
| }
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class LstmUnitKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
 | |
|                    "It must use CPUPlace.");
 | |
| 
 | |
|     auto* x_tensor = ctx.Input<framework::Tensor>("X");
 | |
|     auto* c_prev_tensor = ctx.Input<framework::Tensor>("C_prev");
 | |
|     auto* c_tensor = ctx.Output<framework::Tensor>("C");
 | |
|     auto* h_tensor = ctx.Output<framework::Tensor>("H");
 | |
| 
 | |
|     auto forget_bias = static_cast<T>(ctx.Attr<float>("forget_bias"));
 | |
| 
 | |
|     int b_size = c_tensor->dims()[0];
 | |
|     int D = c_tensor->dims()[1];
 | |
| 
 | |
|     T* C = c_tensor->mutable_data<T>(ctx.GetPlace());
 | |
|     T* H = h_tensor->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     const T* X = x_tensor->data<T>();
 | |
|     const T* C_prev = c_prev_tensor->data<T>();
 | |
| 
 | |
|     for (int n = 0; n < b_size; ++n) {
 | |
|       for (int d = 0; d < D; ++d) {
 | |
|         const T i = sigmoid(X[d]);
 | |
|         const T f = sigmoid(X[1 * D + d] + forget_bias);
 | |
|         const T o = sigmoid(X[2 * D + d]);
 | |
|         const T g = tanh(X[3 * D + d]);
 | |
|         const T c_prev = C_prev[d];
 | |
|         const T c = f * c_prev + i * g;
 | |
|         C[d] = c;
 | |
|         const T tanh_c = tanh(c);
 | |
|         H[d] = o * tanh_c;
 | |
|       }
 | |
|       C_prev += D;
 | |
|       X += 4 * D;
 | |
|       C += D;
 | |
|       H += D;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class LstmUnitGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
 | |
|                    "It must use CPUPlace.");
 | |
| 
 | |
|     auto x_tensor = ctx.Input<Tensor>("X");
 | |
|     auto c_prev_tensor = ctx.Input<Tensor>("C_prev");
 | |
|     auto c_tensor = ctx.Input<Tensor>("C");
 | |
|     auto h_tensor = ctx.Input<Tensor>("H");
 | |
| 
 | |
|     auto hdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("H"));
 | |
|     auto cdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("C"));
 | |
| 
 | |
|     auto xdiff_tensor = ctx.Output<Tensor>(framework::GradVarName("X"));
 | |
|     auto c_prev_diff_tensor =
 | |
|         ctx.Output<Tensor>(framework::GradVarName("C_prev"));
 | |
| 
 | |
|     auto* X = x_tensor->data<T>();
 | |
|     auto* C_prev = c_prev_tensor->data<T>();
 | |
|     auto* C = c_tensor->data<T>();
 | |
|     auto* H = h_tensor->data<T>();
 | |
| 
 | |
|     auto* H_diff = hdiff_tensor->data<T>();
 | |
|     auto* C_diff = cdiff_tensor->data<T>();
 | |
| 
 | |
|     auto* C_prev_diff = c_prev_diff_tensor->mutable_data<T>(ctx.GetPlace());
 | |
|     auto* X_diff = xdiff_tensor->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     int N = c_tensor->dims()[0];
 | |
|     int D = c_tensor->dims()[1];
 | |
| 
 | |
|     auto forget_bias = static_cast<T>(ctx.Attr<float>("forget_bias"));
 | |
| 
 | |
|     for (int n = 0; n < N; ++n) {
 | |
|       for (int d = 0; d < D; ++d) {
 | |
|         T* c_prev_diff = C_prev_diff + d;
 | |
|         T* i_diff = X_diff + d;
 | |
|         T* f_diff = X_diff + 1 * D + d;
 | |
|         T* o_diff = X_diff + 2 * D + d;
 | |
|         T* g_diff = X_diff + 3 * D + d;
 | |
| 
 | |
|         const T i = sigmoid(X[d]);
 | |
|         const T f = sigmoid(X[1 * D + d] + forget_bias);
 | |
|         const T o = sigmoid(X[2 * D + d]);
 | |
|         const T g = tanh(X[3 * D + d]);
 | |
|         const T c_prev = C_prev[d];
 | |
|         const T c = C[d];
 | |
|         const T tanh_c = tanh(c);
 | |
|         const T c_term_diff = C_diff[d] + H_diff[d] * o * (1 - tanh_c * tanh_c);
 | |
|         *c_prev_diff = c_term_diff * f;
 | |
|         *i_diff = c_term_diff * g * i * (1 - i);
 | |
|         *f_diff = c_term_diff * c_prev * f * (1 - f);
 | |
|         *o_diff = H_diff[d] * tanh_c * o * (1 - o);
 | |
|         *g_diff = c_term_diff * i * (1 - g * g);
 | |
|       }
 | |
|       C_prev += D;
 | |
|       X += 4 * D;
 | |
|       C += D;
 | |
|       H += D;
 | |
|       C_diff += D;
 | |
|       H_diff += D;
 | |
|       X_diff += 4 * D;
 | |
|       C_prev_diff += D;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |