You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							68 lines
						
					
					
						
							2.4 KiB
						
					
					
				
			
		
		
	
	
							68 lines
						
					
					
						
							2.4 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class MeanKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* input = context.Input<Tensor>("X");
 | |
|     auto* output = context.Output<Tensor>("Out");
 | |
| 
 | |
|     output->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     auto X = EigenVector<T>::Flatten(*input);
 | |
|     auto y = EigenScalar<T>::From(*output);
 | |
|     auto& place =
 | |
|         *context.template device_context<DeviceContext>().eigen_device();
 | |
| 
 | |
|     y.device(place) = X.mean();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class MeanGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
 | |
|     PADDLE_ENFORCE(OG->numel() == 1, "Mean Gradient should be scalar");
 | |
|     auto IG = context.Output<Tensor>(framework::GradVarName("X"));
 | |
|     IG->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     T ig_size = static_cast<T>(IG->numel());
 | |
|     Eigen::DSizes<int, 1> bcast(ig_size);
 | |
| 
 | |
|     EigenVector<T>::Flatten(*IG).device(
 | |
|         *context.template device_context<DeviceContext>().eigen_device()) =
 | |
|         (EigenVector<T>::From(*OG) / ig_size).broadcast(bcast);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |