You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							107 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							107 lines
						
					
					
						
							3.6 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/platform/hostdevice.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| template <typename T, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | |
| 
 | |
| template <typename T>
 | |
| struct CheckLabelValue {
 | |
|   HOSTDEVICE T operator()(const T& val) const {
 | |
|     PADDLE_ASSERT(val == static_cast<T>(0) || val == static_cast<T>(1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct ModifiedHuberLossForward {
 | |
|   HOSTDEVICE T operator()(const T& val) const {
 | |
|     if (val < -1) {
 | |
|       return -4 * val;
 | |
|     } else if (val < 1) {
 | |
|       return (1 - val) * (1 - val);
 | |
|     } else {
 | |
|       return static_cast<T>(0);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ModifiedHuberLossKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* in0 = context.Input<Tensor>("X");
 | |
|     auto* in1 = context.Input<Tensor>("Y");
 | |
|     auto* out0 = context.Output<framework::Tensor>("IntermediateVal");
 | |
|     auto* out1 = context.Output<framework::Tensor>("Out");
 | |
| 
 | |
|     out0->mutable_data<T>(context.GetPlace());
 | |
|     out1->mutable_data<T>(context.GetPlace());
 | |
|     auto& place =
 | |
|         *context.template device_context<DeviceContext>().eigen_device();
 | |
| 
 | |
|     auto x = EigenVector<T>::Flatten(*in0);
 | |
|     auto y = EigenVector<T>::Flatten(*in1);
 | |
|     // make sure value's of Y in {0, 1}
 | |
|     y.unaryExpr(CheckLabelValue<T>());
 | |
|     auto inter_val = EigenVector<T>::Flatten(*out0);
 | |
|     // scale y to {-1, +1} and compute x * y
 | |
|     inter_val.device(place) = x * (2 * y - static_cast<T>(1));
 | |
|     auto loss = EigenVector<T>::Flatten(*out1);
 | |
|     loss.device(place) = inter_val.unaryExpr(ModifiedHuberLossForward<T>());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // CPU backward kernel
 | |
| template <typename T>
 | |
| class ModifiedHuberLossGradCPUKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* in0 = context.Input<Tensor>("Y");
 | |
|     auto* in1 = context.Input<framework::Tensor>("IntermediateVal");
 | |
|     auto* in2 = context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* out0 = context.Output<framework::Tensor>(framework::GradVarName("X"));
 | |
| 
 | |
|     if (out0) {
 | |
|       const T* y_ptr = in0->data<T>();
 | |
|       const T* inter_val_ptr = in1->data<T>();
 | |
|       const T* out_grad_ptr = in2->data<T>();
 | |
|       size_t counts = static_cast<size_t>(framework::product(in1->dims()));
 | |
|       T* x_grad_ptr = out0->mutable_data<T>(context.GetPlace());
 | |
|       for (size_t i = 0; i < counts; ++i) {
 | |
|         if (inter_val_ptr[i] < -1) {
 | |
|           x_grad_ptr[i] = -4 * (2 * y_ptr[i] - 1) * out_grad_ptr[i];
 | |
|         } else if (inter_val_ptr[i] < 1) {
 | |
|           x_grad_ptr[i] = -2 * (1 - inter_val_ptr[i]) * (2 * y_ptr[i] - 1) *
 | |
|                           out_grad_ptr[i];
 | |
|         } else {
 | |
|           x_grad_ptr[i] = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |