You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							167 lines
						
					
					
						
							6.5 KiB
						
					
					
				
			
		
		
	
	
							167 lines
						
					
					
						
							6.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/mul_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| 
 | |
| class MulOpShapeInference : public framework::InferShapeBase {
 | |
|  public:
 | |
|   void operator()(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | |
|                    "Output(Out) of MulOp should not be null.");
 | |
| 
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     auto y_dims = ctx->GetInputDim("Y");
 | |
| 
 | |
|     int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
 | |
|     int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
 | |
| 
 | |
|     VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
 | |
|             << " x_num_col_dims=" << x_num_col_dims
 | |
|             << " y_num_col_dims=" << y_num_col_dims;
 | |
| 
 | |
|     PADDLE_ENFORCE_GT(
 | |
|         x_dims.size(), x_num_col_dims,
 | |
|         "The input tensor X's rank of MulOp should be larger than "
 | |
|         "x_num_col_dims.");
 | |
|     PADDLE_ENFORCE_GT(
 | |
|         y_dims.size(), y_num_col_dims,
 | |
|         "The input tensor Y's rank of MulOp should be larger than "
 | |
|         "y_num_col_dims.");
 | |
| 
 | |
|     auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
 | |
|     auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         x_mat_dims[1], y_mat_dims[0],
 | |
|         "First matrix's width must be equal with second matrix's height.");
 | |
|     std::vector<int64_t> output_dims;
 | |
|     output_dims.reserve(
 | |
|         static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));
 | |
| 
 | |
|     for (int i = 0; i < x_num_col_dims; ++i) {
 | |
|       output_dims.push_back(x_dims[i]);
 | |
|     }
 | |
| 
 | |
|     for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
 | |
|       output_dims.push_back(y_dims[i]);
 | |
|     }
 | |
| 
 | |
|     ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
 | |
|     ctx->ShareLoD("X", /*->*/ "Out");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MulOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   MulOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X", "(Tensor), The first input tensor of mul op.");
 | |
|     AddInput("Y", "(Tensor), The second input tensor of mul op.");
 | |
|     AddOutput("Out", "(Tensor), The output tensor of mul op.");
 | |
|     AddAttr<int>(
 | |
|         "x_num_col_dims",
 | |
|         R"DOC((int, default 1), The mul_op can take tensors with more than two
 | |
|               dimensions as its inputs. If the input $X$ is a tensor with more
 | |
|               than two dimensions, $X$ will be flattened into a two-dimensional
 | |
|               matrix first. The flattening rule is: the first `num_col_dims`
 | |
|               will be flattened to form the first dimension of the final matrix
 | |
|               (the height of the matrix), and the rest `rank(X) - num_col_dims`
 | |
|               dimensions are flattened to form the second dimension of the final
 | |
|               matrix (the width of the matrix). As a result, height of the
 | |
|               flattened matrix is equal to the product of $X$'s first
 | |
|               `x_num_col_dims` dimensions' sizes, and width of the flattened
 | |
|               matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
 | |
|               dimensions' size. For example, suppose $X$ is a 6-dimensional
 | |
|               tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
 | |
|               Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
 | |
|               [24, 30].
 | |
|         )DOC")
 | |
|         .SetDefault(1)
 | |
|         .EqualGreaterThan(1);
 | |
|     AddAttr<int>(
 | |
|         "y_num_col_dims",
 | |
|         R"DOC((int, default 1), The mul_op can take tensors with more than two,
 | |
|               dimensions as its inputs. If the input $Y$ is a tensor with more
 | |
|               than two dimensions, $Y$ will be flattened into a two-dimensional
 | |
|               matrix first. The attribute `y_num_col_dims` determines how $Y$ is
 | |
|               flattened. See comments of `x_num_col_dims` for more details.
 | |
|         )DOC")
 | |
|         .SetDefault(1)
 | |
|         .EqualGreaterThan(1);
 | |
|     AddComment(R"DOC(
 | |
| Mul Operator.
 | |
| 
 | |
| This operator is used to perform matrix multiplication for input $X$ and $Y$.
 | |
| 
 | |
| The equation is:
 | |
| 
 | |
| $$Out = X * Y$$
 | |
| 
 | |
| Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
 | |
| or not. But the output only shares the LoD information with input $X$.
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MulOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | |
|                    "Input(Out@GRAD) should not be null");
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     auto y_dims = ctx->GetInputDim("Y");
 | |
|     auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
 | |
| 
 | |
|     auto x_mat_dims = framework::flatten_to_2d(
 | |
|         x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
 | |
|     auto y_mat_dims = framework::flatten_to_2d(
 | |
|         y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
 | |
| 
 | |
|     auto x_grad_name = framework::GradVarName("X");
 | |
|     auto y_grad_name = framework::GradVarName("Y");
 | |
| 
 | |
|     if (ctx->HasOutput(x_grad_name)) {
 | |
|       ctx->SetOutputDim(x_grad_name, x_dims);
 | |
|     }
 | |
|     if (ctx->HasOutput(y_grad_name)) {
 | |
|       ctx->SetOutputDim(y_grad_name, y_dims);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(mul, paddle::framework::OperatorWithKernel, ops::MulOpMaker,
 | |
|                   ops::MulOpShapeInference,
 | |
|                   paddle::framework::DefaultGradOpDescMaker<true>);
 | |
| REGISTER_OPERATOR(mul_grad, ops::MulOpGrad);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>);
 |