You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							82 lines
						
					
					
						
							3.0 KiB
						
					
					
				
			
		
		
	
	
							82 lines
						
					
					
						
							3.0 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/memory/memcpy.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class MultiplexCPUKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto ins = ctx.MultiInput<framework::Tensor>("X");
 | |
|     auto ids = ctx.Input<framework::Tensor>("Ids");
 | |
|     auto* out = ctx.Output<framework::Tensor>("Out");
 | |
| 
 | |
|     out->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto rows = ins[0]->dims()[0];
 | |
|     auto cols = ins[0]->numel() / rows;
 | |
|     auto index = ids->data<int32_t>();
 | |
|     platform::CPUPlace place = boost::get<platform::CPUPlace>(ctx.GetPlace());
 | |
|     for (auto i = 0; i < rows; i++) {
 | |
|       int32_t k = index[i];
 | |
|       PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative.");
 | |
|       PADDLE_ENFORCE_LT(static_cast<size_t>(k), ins.size(),
 | |
|                         "index exceeds the number of candidate tensors.");
 | |
|       memory::Copy(place, out->data<T>() + i * cols, place,
 | |
|                    ins[k]->data<T>() + i * cols, cols * sizeof(T));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class MultiplexGradCPUKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const {
 | |
|     auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* ids = ctx.Input<framework::Tensor>("Ids");
 | |
|     auto ins = ctx.MultiInput<framework::Tensor>("X");
 | |
|     auto d_ins =
 | |
|         ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
 | |
|     for (size_t i = 0; i < d_ins.size(); i++) {
 | |
|       if (d_ins[i]) {
 | |
|         d_ins[i]->mutable_data<T>(ctx.GetPlace());
 | |
|         auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
 | |
|         t.device(*ctx.template device_context<DeviceContext>().eigen_device()) =
 | |
|             t.constant(static_cast<T>(0));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     auto rows = ins[0]->dims()[0];
 | |
|     auto cols = ins[0]->numel() / rows;
 | |
|     auto* index = ids->data<int32_t>();
 | |
|     platform::CPUPlace place = boost::get<platform::CPUPlace>(ctx.GetPlace());
 | |
|     for (auto i = 0; i < rows; i++) {
 | |
|       size_t k = static_cast<size_t>(index[i]);
 | |
|       if (d_ins[k]) {
 | |
|         memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
 | |
|                      d_out->data<T>() + i * cols, cols * sizeof(T));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |