You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							403 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
	
	
							403 lines
						
					
					
						
							14 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| #include "paddle/fluid/framework/executor.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/threadpool.h"
 | |
| #include "paddle/fluid/operators/detail/safe_ref.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| static constexpr char kInputs[] = "inputs";
 | |
| static constexpr char kParameters[] = "parameters";
 | |
| static constexpr char kPlaces[] = "places";
 | |
| 
 | |
| static constexpr char kOutputs[] = "outputs";
 | |
| static constexpr char kParallelScopes[] = "parallel_scopes";
 | |
| 
 | |
| static constexpr char kParallelBlock[] = "sub_block";
 | |
| static constexpr char kUseNCCL[] = "use_nccl";
 | |
| 
 | |
| using LoDTensor = framework::LoDTensor;
 | |
| using SelectedRows = framework::SelectedRows;
 | |
| 
 | |
| static void SplitTensorAndMoveTensorToScopes(
 | |
|     const framework::Scope &scope, std::vector<framework::Scope *> *sub_scopes,
 | |
|     const std::vector<platform::Place> &places,
 | |
|     const std::vector<std::string> &names) {
 | |
|   size_t num_sub_scopes = 0;
 | |
|   for (auto &argu : names) {
 | |
|     const auto &tensor =
 | |
|         detail::Ref(scope.FindVar(argu),
 | |
|                     "Cannot find variable %s in the parent scope", argu)
 | |
|             .Get<LoDTensor>();
 | |
|     auto lod_tensors = tensor.SplitLoDTensor(places);
 | |
| 
 | |
|     for (auto &lod : lod_tensors) {
 | |
|       VLOG(3) << lod.dims();
 | |
|     }
 | |
|     if (num_sub_scopes == 0) {
 | |
|       num_sub_scopes = lod_tensors.size();
 | |
|     } else {
 | |
|       PADDLE_ENFORCE_EQ(num_sub_scopes, lod_tensors.size());
 | |
|     }
 | |
|     PADDLE_ENFORCE_NE(num_sub_scopes, 0);
 | |
|     if (sub_scopes->size() == 0) {
 | |
|       sub_scopes->reserve(num_sub_scopes);
 | |
|       for (size_t i = 0; i < num_sub_scopes; ++i) {
 | |
|         sub_scopes->emplace_back(&scope.NewScope());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < lod_tensors.size(); ++i) {
 | |
|       *detail::Ref(sub_scopes->at(i)->Var(argu),
 | |
|                    "Cannot find variable in the sub-scope", argu)
 | |
|            .GetMutable<LoDTensor>() = lod_tensors[i];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void CopyOrShare(const framework::Variable &src,
 | |
|                         const platform::Place &dst_place,
 | |
|                         framework::Variable *dst) {
 | |
|   if (src.IsType<LoDTensor>()) {
 | |
|     if (src.Get<LoDTensor>().place() == dst_place) {
 | |
|       dst->GetMutable<LoDTensor>()->ShareDataWith(src.Get<LoDTensor>());
 | |
|       dst->GetMutable<LoDTensor>()->set_lod(src.Get<LoDTensor>().lod());
 | |
|     } else {
 | |
|       TensorCopy(src.Get<LoDTensor>(), dst_place, dst->GetMutable<LoDTensor>());
 | |
|     }
 | |
|   } else if (src.IsType<SelectedRows>()) {
 | |
|     auto &src_sr = src.Get<SelectedRows>();
 | |
|     auto *dst_sr = dst->GetMutable<SelectedRows>();
 | |
|     dst_sr->set_height(src_sr.height());
 | |
|     if (src_sr.value().place() == dst_place) {
 | |
|       dst_sr->mutable_value()->ShareDataWith(src_sr.value());
 | |
|       dst_sr->set_rows(src_sr.rows());
 | |
|     } else {
 | |
|       TensorCopy(src_sr.value(), dst_place, dst_sr->mutable_value());
 | |
|     }
 | |
|   } else {
 | |
|     PADDLE_THROW("Expect LoDTensor/SelectedRows, get %s", src.Type().name());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WaitOnPlace(const platform::Place place) {
 | |
|   platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
 | |
|   auto &dev_ctx = *pool.Get(place);
 | |
|   dev_ctx.Wait();
 | |
| }
 | |
| 
 | |
| void WaitOnPlaces(const std::vector<platform::Place> places) {
 | |
|   platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
 | |
| 
 | |
|   for (auto &place : places) {
 | |
|     auto &dev_ctx = *pool.Get(place);
 | |
|     dev_ctx.Wait();
 | |
|   }
 | |
| }
 | |
| 
 | |
| class ParallelDoOp : public framework::OperatorBase {
 | |
|  public:
 | |
|   ParallelDoOp(const std::string &type,
 | |
|                const framework::VariableNameMap &inputs,
 | |
|                const framework::VariableNameMap &outputs,
 | |
|                const framework::AttributeMap &attrs)
 | |
|       : framework::OperatorBase(type, inputs, outputs, attrs) {}
 | |
| 
 | |
|  private:
 | |
|   void RunImpl(const framework::Scope &scope,
 | |
|                const platform::Place &place) const override {
 | |
|     // get device context from pool
 | |
|     platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
 | |
|     auto &dev_ctx = *pool.Get(place);
 | |
| 
 | |
|     auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
 | |
|     auto *program = block->Program();
 | |
| 
 | |
|     auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
 | |
| 
 | |
|     auto &sub_scopes = *scope.FindVar(Output(kParallelScopes))
 | |
|                             ->GetMutable<std::vector<framework::Scope *>>();
 | |
| 
 | |
|     // split input
 | |
|     SplitTensorAndMoveTensorToScopes(scope, &sub_scopes, places,
 | |
|                                      Inputs(kInputs));
 | |
| 
 | |
|     // copy parameter
 | |
|     for (auto ¶m : Inputs(kParameters)) {
 | |
|       PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(),
 | |
|                      "Only support parameter type as LoDTensor");
 | |
|       auto &src = scope.FindVar(param)->Get<LoDTensor>();
 | |
|       for (size_t i = 0; i < sub_scopes.size(); ++i) {
 | |
|         auto &place = places[i];
 | |
|         auto *sub_scope = sub_scopes[i];
 | |
|         auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>();
 | |
|         framework::TensorCopy(src, place, dst);
 | |
|       }
 | |
|     }
 | |
|     WaitOnPlaces(places);
 | |
| 
 | |
|     std::vector<std::future<void>> workers;
 | |
|     workers.reserve(places.size());
 | |
|     for (size_t place_idx = 0; place_idx < sub_scopes.size(); ++place_idx) {
 | |
|       auto &place = places[place_idx];
 | |
|       auto *cur_scope = sub_scopes[place_idx];
 | |
| 
 | |
|       workers.emplace_back(framework::Async([program, cur_scope, place, block] {
 | |
|         framework::Executor executor(place);
 | |
|         executor.Run(*program, cur_scope, block->ID(),
 | |
|                      false /*create_local_scope*/);
 | |
|       }));
 | |
|     }
 | |
|     for (auto &worker : workers) {
 | |
|       worker.wait();
 | |
|     }
 | |
|     WaitOnPlaces(places);
 | |
| 
 | |
|     // merge output
 | |
|     for (auto &o_name : Outputs(kOutputs)) {
 | |
|       std::vector<const framework::LoDTensor *> lod_tensors;
 | |
|       lod_tensors.reserve(sub_scopes.size());
 | |
|       for (auto *sub_scope : sub_scopes) {
 | |
|         lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get<LoDTensor>());
 | |
|       }
 | |
| 
 | |
|       auto *lod_tensor_to_be_merged =
 | |
|           scope.FindVar(o_name)->GetMutable<LoDTensor>();
 | |
|       lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace());
 | |
|     }
 | |
|     WaitOnPlaces(places);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput(kInputs, "").AsDuplicable();
 | |
|     AddInput(kParameters, "").AsDuplicable();
 | |
|     AddInput(kPlaces, "");
 | |
|     AddOutput(kOutputs, "").AsDuplicable();
 | |
|     AddOutput(kParallelScopes, "");
 | |
|     AddAttr<framework::BlockDesc *>(kParallelBlock, "");
 | |
|     AddAttr<bool>(kUseNCCL, "true if we use nccl on backward")
 | |
|         .SetDefault(false);
 | |
|     AddComment(R"DOC(
 | |
| ParallelDo Operator.
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ParallelDoGradOp : public framework::OperatorBase {
 | |
|  public:
 | |
|   ParallelDoGradOp(const std::string &type,
 | |
|                    const framework::VariableNameMap &inputs,
 | |
|                    const framework::VariableNameMap &outputs,
 | |
|                    const framework::AttributeMap &attrs)
 | |
|       : framework::OperatorBase(type, inputs, outputs, attrs) {}
 | |
| 
 | |
|  private:
 | |
|   void RunImpl(const framework::Scope &scope,
 | |
|                const platform::Place &place) const override {
 | |
|     auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
 | |
|     auto *program = block->Program();
 | |
| 
 | |
|     auto &sub_scopes = scope.FindVar(Input(kParallelScopes))
 | |
|                            ->Get<std::vector<framework::Scope *>>();
 | |
|     auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
 | |
| 
 | |
|     // feed output@grad
 | |
|     SplitTensorAndMoveTensorToScopes(
 | |
|         scope, const_cast<std::vector<framework::Scope *> *>(&sub_scopes),
 | |
|         places, Inputs(framework::GradVarName(kOutputs)));
 | |
|     WaitOnPlaces(places);
 | |
| 
 | |
|     // exe run
 | |
|     std::vector<std::future<void>> workers;
 | |
|     for (size_t i = 0; i < sub_scopes.size(); ++i) {
 | |
|       auto &place = places[i];
 | |
|       auto *cur_scope = sub_scopes[i];
 | |
| 
 | |
|       // execute
 | |
|       workers.emplace_back(framework::Async([program, cur_scope, place, block] {
 | |
|         framework::Executor executor(place);
 | |
|         executor.Run(*program, cur_scope, block->ID(),
 | |
|                      false /*create_local_scope*/);
 | |
|       }));
 | |
|     }
 | |
|     for (auto &worker : workers) {
 | |
|       worker.wait();
 | |
|     }
 | |
|     WaitOnPlaces(places);
 | |
| 
 | |
|     // NCCL allreduce op will be added by backward,
 | |
|     // so no need to explicitly accumulate grad
 | |
|     if (!(Attr<bool>(kUseNCCL))) {
 | |
|       AccumulateGrad(scope, place, sub_scopes, places);
 | |
|     } else {
 | |
|       for (auto &place : places) {
 | |
|         PADDLE_ENFORCE(platform::is_gpu_place(place),
 | |
|                        "NCCL only supports cuda place");
 | |
|       }
 | |
|     }
 | |
|     for (auto &s : Outputs(framework::GradVarName(kParameters))) {
 | |
|       if (s == "@EMPTY@") {
 | |
|         continue;
 | |
|       }
 | |
|       VLOG(3) << "Moving " << s;
 | |
|       CopyOrShare(*sub_scopes[0]->FindVar(s), place, scope.FindVar(s));
 | |
|     }
 | |
|     WaitOnPlaces(places);
 | |
|   }
 | |
| 
 | |
|   void AccumulateGrad(const framework::Scope &scope,
 | |
|                       const platform::Place &place,
 | |
|                       const std::vector<framework::Scope *> &sub_scopes,
 | |
|                       const platform::PlaceList &places) const {
 | |
|     for (auto &s : Outputs(framework::GradVarName(kParameters))) {
 | |
|       if (s == "@EMPTY@") {
 | |
|         continue;
 | |
|       }
 | |
|       VLOG(3) << "Accumulating " << s;
 | |
|       if (s == framework::kEmptyVarName) continue;
 | |
|       std::string tmp_name;
 | |
|       auto *tmp = sub_scopes[0]->Var(&tmp_name);
 | |
| 
 | |
|       for (size_t i = 1; i < sub_scopes.size(); ++i) {
 | |
|         CopyOrShare(*sub_scopes[i]->FindVar(s), places[0], tmp);
 | |
|         WaitOnPlaces(places);
 | |
| 
 | |
|         auto sum_op = framework::OpRegistry::CreateOp(
 | |
|             "sum", {{"X", {s, tmp_name}}}, {{"Out", {s}}},
 | |
|             framework::AttributeMap{});
 | |
|         VLOG(10) << sum_op->DebugStringEx(sub_scopes[0]);
 | |
|         sum_op->Run(*sub_scopes[0], places[0]);
 | |
|         WaitOnPlace(places[0]);
 | |
|       }
 | |
| 
 | |
|       CopyOrShare(*sub_scopes[0]->FindVar(s), place, scope.FindVar(s));
 | |
|     }
 | |
|     WaitOnPlaces(places);
 | |
|   }
 | |
| };
 | |
| 
 | |
| std::ostream &operator<<(std::ostream &sout,
 | |
|                          const std::vector<std::string> &strs) {
 | |
|   std::copy(strs.begin(), strs.end(),
 | |
|             std::ostream_iterator<std::string>(sout, ","));
 | |
|   return sout;
 | |
| }
 | |
| 
 | |
| class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
 | |
|  public:
 | |
|   using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
 | |
| 
 | |
|  protected:
 | |
|   virtual std::unique_ptr<framework::OpDesc> Apply() const {
 | |
|     auto *grad = new framework::OpDesc();
 | |
|     grad->SetType("parallel_do_grad");
 | |
|     for (auto &input_param : this->InputNames()) {
 | |
|       VLOG(3) << input_param;
 | |
|       grad->SetInput(input_param, this->Input(input_param));
 | |
|       if (input_param != kPlaces) {
 | |
|         grad->SetOutput(framework::GradVarName(input_param),
 | |
|                         this->InputGrad(input_param, false));
 | |
|       }
 | |
|     }
 | |
|     auto *g_block = this->grad_block_[0];
 | |
| 
 | |
|     // All variable name that needed by gradient operators
 | |
|     std::unordered_set<std::string> all_inputs_in_grad_blocks;
 | |
| 
 | |
|     for (size_t i = 0; i < g_block->OpSize(); ++i) {
 | |
|       auto *op = g_block->Op(i);
 | |
|       for (auto &var_name : op->InputArgumentNames()) {
 | |
|         all_inputs_in_grad_blocks.insert(var_name);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (auto &output_param : this->OutputNames()) {
 | |
|       if (output_param == kParallelScopes) {
 | |
|         grad->SetInput(output_param, this->Output(output_param));
 | |
|         grad->SetInput(framework::GradVarName(output_param),
 | |
|                        this->Output(output_param));
 | |
|       } else {
 | |
|         grad->SetInput(output_param, this->Output(output_param));
 | |
|         std::vector<std::string> og_names;
 | |
|         for (auto &og_name : this->OutputGrad(output_param)) {
 | |
|           if (all_inputs_in_grad_blocks.count(og_name) != 0) {
 | |
|             // there are some gradient operators who need the OG. So make this
 | |
|             // OG as an input of parallel.do
 | |
|             og_names.push_back(og_name);
 | |
|           }
 | |
|           // else, there is no operator who need the OG. Do not use this OG as
 | |
|           // an input
 | |
|         }
 | |
|         grad->SetInput(framework::GradVarName(output_param), og_names);
 | |
|       }
 | |
|     }
 | |
|     grad->SetAttrMap(this->Attrs());
 | |
|     grad->SetBlockAttr(kParallelBlock, *grad_block_[0]);
 | |
| 
 | |
|     return std::unique_ptr<framework::OpDesc>(grad);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ParallelDoGradOpShapeInference : public framework::InferShapeBase {
 | |
|  public:
 | |
|   void operator()(framework::InferShapeContext *ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInputs(kParameters));
 | |
|     PADDLE_ENFORCE(ctx->HasInputs(kInputs));
 | |
|     PADDLE_ENFORCE(ctx->HasInputs(kOutputs));
 | |
| 
 | |
|     ctx->SetOutputsDim(framework::GradVarName(kParameters),
 | |
|                        ctx->GetInputsDim(kParameters));
 | |
| 
 | |
|     auto i_dims = ctx->GetInputsDim(kInputs);
 | |
|     auto ig_names = ctx->Outputs(framework::GradVarName(kInputs));
 | |
| 
 | |
|     for (size_t i = 0; i < ig_names.size(); ++i) {
 | |
|       auto &ig_name = ig_names[i];
 | |
|       if (ig_name == framework::kEmptyVarName) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ctx->SetDims({ig_name}, {i_dims[i]});
 | |
|     }
 | |
| 
 | |
|     auto p_dims = ctx->GetInputsDim(kParameters);
 | |
|     auto pg_names = ctx->Outputs(framework::GradVarName(kParameters));
 | |
|     for (size_t i = 0; i < pg_names.size(); ++i) {
 | |
|       auto &pg_name = pg_names[i];
 | |
|       if (pg_name == framework::kEmptyVarName) {
 | |
|         continue;
 | |
|       }
 | |
|       ctx->SetDims({pg_name}, {p_dims[i]});
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp,
 | |
|                   paddle::operators::ParallelDoOpProtoMaker,
 | |
|                   paddle::operators::ParallelDoGradOpDescMaker);
 | |
| REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp,
 | |
|                   paddle::operators::ParallelDoGradOpShapeInference);
 |