You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							111 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
	
	
							111 lines
						
					
					
						
							4.2 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| #include "paddle/fluid/operators/math/pooling.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| 
 | |
| template <typename DeviceContext, typename T1, typename T2>
 | |
| class MaxPoolWithIndexKernel : public framework::OpKernel<T1> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     const Tensor* in_x = context.Input<Tensor>("X");
 | |
|     Tensor* out = context.Output<Tensor>("Out");
 | |
|     Tensor* mask = context.Output<Tensor>("Mask");
 | |
| 
 | |
|     std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
 | |
|     std::vector<int> strides = context.Attr<std::vector<int>>("strides");
 | |
|     std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
 | |
| 
 | |
|     auto& dev_ctx = context.template device_context<DeviceContext>();
 | |
|     if (context.Attr<bool>("global_pooling")) {
 | |
|       for (size_t i = 0; i < ksize.size(); ++i) {
 | |
|         paddings[i] = 0;
 | |
|         ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (ksize.size()) {
 | |
|       case 2: {
 | |
|         paddle::operators::math::MaxPool2dWithIndexFunctor<DeviceContext, T1,
 | |
|                                                            T2>
 | |
|             pool2d_forward;
 | |
|         pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask);
 | |
|       } break;
 | |
|       case 3: {
 | |
|         paddle::operators::math::MaxPool3dWithIndexFunctor<DeviceContext, T1,
 | |
|                                                            T2>
 | |
|             pool3d_forward;
 | |
|         pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask);
 | |
|       } break;
 | |
|       default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T1, typename T2>
 | |
| class MaxPoolWithIndexGradKernel : public framework::OpKernel<T1> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     const Tensor* mask = context.Input<Tensor>("Mask");
 | |
|     const Tensor* out_grad =
 | |
|         context.Input<Tensor>(framework::GradVarName("Out"));
 | |
|     Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
 | |
| 
 | |
|     std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
 | |
|     std::vector<int> strides = context.Attr<std::vector<int>>("strides");
 | |
|     std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
 | |
|     if (context.Attr<bool>("global_pooling")) {
 | |
|       for (size_t i = 0; i < ksize.size(); ++i) {
 | |
|         paddings[i] = 0;
 | |
|         ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (in_x_grad) {
 | |
|       in_x_grad->mutable_data<T1>(context.GetPlace());
 | |
|       auto& device_ctx = context.template device_context<DeviceContext>();
 | |
|       math::set_constant(device_ctx, in_x_grad, 0);
 | |
| 
 | |
|       switch (ksize.size()) {
 | |
|         case 2: {
 | |
|           paddle::operators::math::MaxPool2dWithIndexGradFunctor<DeviceContext,
 | |
|                                                                  T1, T2>
 | |
|               pool2d_backward;
 | |
|           pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides,
 | |
|                           paddings, in_x_grad);
 | |
|         } break;
 | |
|         case 3: {
 | |
|           paddle::operators::math::MaxPool3dWithIndexGradFunctor<DeviceContext,
 | |
|                                                                  T1, T2>
 | |
|               pool3d_backward;
 | |
|           pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides,
 | |
|                           paddings, in_x_grad);
 | |
|         } break;
 | |
|         default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |