You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							180 lines
						
					
					
						
							8.1 KiB
						
					
					
				
			
		
		
	
	
							180 lines
						
					
					
						
							8.1 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/positive_negative_pair_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class PositiveNegativePairOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     PADDLE_ENFORCE(
 | |
|         ctx->HasInput("Score"),
 | |
|         "Input(Score) of PositiveNegativePairOp should not be null.");
 | |
|     PADDLE_ENFORCE(
 | |
|         ctx->HasInput("Label"),
 | |
|         "Input(Label) of PositiveNegativePairOp should not be null.");
 | |
|     PADDLE_ENFORCE(
 | |
|         ctx->HasInput("QueryID"),
 | |
|         "Input(QueryID) of PositiveNegativePairOp should not be null.");
 | |
|     PADDLE_ENFORCE(
 | |
|         ctx->HasOutput("PositivePair"),
 | |
|         "Output(PositivePair) of PositiveNegativePairOp should not be null.");
 | |
|     PADDLE_ENFORCE(
 | |
|         ctx->HasOutput("NegativePair"),
 | |
|         "Output(NegativePair) of PositiveNegativePairOp should not be null.");
 | |
|     PADDLE_ENFORCE(
 | |
|         ctx->HasOutput("NeutralPair"),
 | |
|         "Output(NeutralPair) of PositiveNegativePairOp should not be null.");
 | |
|     auto scalar_dim = framework::make_ddim({1});
 | |
|     if (ctx->HasInput("AccumulatePositivePair") ||
 | |
|         ctx->HasInput("AccumulateNegativePair") ||
 | |
|         ctx->HasInput("AccumulateNeutralPair")) {
 | |
|       PADDLE_ENFORCE(ctx->HasInput("AccumulatePositivePair") &&
 | |
|                          ctx->HasInput("AccumulateNegativePair") &&
 | |
|                          ctx->HasInput("AccumulateNeutralPair"),
 | |
|                      "All optional inputs(AccumulatePositivePair, "
 | |
|                      "AccumulateNegativePair, AccumulateNeutralPair) of "
 | |
|                      "PositiveNegativePairOp are required if one of them is "
 | |
|                      "specified.");
 | |
|       PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulatePositivePair"), scalar_dim,
 | |
|                         "Shape of AccumulatePositivePair should be {1}.");
 | |
|       PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNegativePair"), scalar_dim,
 | |
|                         "Shape of AccumulateNegativePair should be {1}.");
 | |
|       PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNeutralPair"), scalar_dim,
 | |
|                         "Shape of AccumulateNeutralPair should be {1}.");
 | |
|     }
 | |
| 
 | |
|     auto score_dim = ctx->GetInputDim("Score");
 | |
|     auto label_dim = ctx->GetInputDim("Label");
 | |
|     auto query_dim = ctx->GetInputDim("QueryID");
 | |
|     PADDLE_ENFORCE_EQ(score_dim.size(), 2, "Score should be a 2-D tensor.");
 | |
|     PADDLE_ENFORCE_EQ(label_dim.size(), 2, "Label should be a 2-D tensor.");
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         label_dim[0], score_dim[0],
 | |
|         "Tensor Score and Label should have the same height (batch size).");
 | |
|     PADDLE_ENFORCE_EQ(label_dim[1], 1,
 | |
|                       "The width of Label should be 1, i.e. each item should "
 | |
|                       "have a scalar label.");
 | |
|     PADDLE_ENFORCE(query_dim == label_dim,
 | |
|                    "QueryID should have the same shape as Label.");
 | |
|     if (ctx->HasInput("Weight")) {
 | |
|       PADDLE_ENFORCE(ctx->GetInputDim("Weight") == label_dim,
 | |
|                      "Weight should have the same shape as Label.");
 | |
|     }
 | |
|     int column = ctx->Attrs().Get<int>("column");
 | |
|     auto depth = score_dim[1];
 | |
|     PADDLE_ENFORCE(column < depth && column >= -depth,
 | |
|                    "Attribute column should be in the range of [-%l, %l)",
 | |
|                    depth, depth);
 | |
| 
 | |
|     ctx->SetOutputDim("PositivePair", scalar_dim);
 | |
|     ctx->SetOutputDim("NegativePair", scalar_dim);
 | |
|     ctx->SetOutputDim("NeutralPair", scalar_dim);
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext &ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         framework::ToDataType(ctx.Input<Tensor>("Score")->type()),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   PositiveNegativePairOpMaker(OpProto *proto, OpAttrChecker *op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("Score",
 | |
|              "(Tensor, float) Model Score on an item (with "
 | |
|              "respect to QueryID). It's a 2-D tensor with shape [batch_size, "
 | |
|              "depth], where the column specified by the attribute \"column\" "
 | |
|              "is used as item score.");
 | |
|     AddInput("Label",
 | |
|              "(Tensor, float) Label of an item (with repsect to "
 | |
|              "QueryId). It's a 2-D tensor with shape [batch_size, 1].");
 | |
|     AddInput("QueryID",
 | |
|              "(Tensor, int64) Query ID that indicates the context. Its shape "
 | |
|              "should be the same as Label.");
 | |
|     AddInput(
 | |
|         "AccumulatePositivePair",
 | |
|         "(float) Optional. The accumulated number of positive pairs over a "
 | |
|         "stream of data. If provided, the output PositivePair will be "
 | |
|         "initialized with this number rather than 0. it won't be modified "
 | |
|         "in place.")
 | |
|         .AsDispensable();
 | |
|     AddInput(
 | |
|         "AccumulateNegativePair",
 | |
|         "(float) Optional. The accumulated number of negative pairs over a "
 | |
|         "stream of data. If provided, the output NegativePair will be "
 | |
|         "initialized with this number rather than 0. it won't be modified "
 | |
|         "in place.")
 | |
|         .AsDispensable();
 | |
|     AddInput("AccumulateNeutralPair",
 | |
|              "(float) Optional. The accumulated number of neutral pairs over a "
 | |
|              "stream of data. If provided, the output NeutralPair will be "
 | |
|              "initialized with this number rather than 0. it won't be modified "
 | |
|              "in place.")
 | |
|         .AsDispensable();
 | |
|     AddInput("Weight",
 | |
|              "(float) Optional. Weight of current item. If specified, its "
 | |
|              "shape should be the same as Label, and the meaning of the output "
 | |
|              "changes from numbers of pairs to the total sum of pairs' "
 | |
|              "weights. Weight of a pair of items is the average of their "
 | |
|              "weights.")
 | |
|         .AsDispensable();
 | |
|     AddOutput("PositivePair",
 | |
|               "(float) Number of positive pairs, i.e. the pairs of "
 | |
|               "items that are ranked correctly.");
 | |
|     AddOutput("NegativePair",
 | |
|               "(float) Number of negative pairs, i.e. the pairs of "
 | |
|               "items that are ranked incorrectly.");
 | |
|     AddOutput("NeutralPair",
 | |
|               "(float) Number of neutral pairs, i.e. the pairs of items "
 | |
|               "that have the same score.")
 | |
|         .AsDispensable();
 | |
|     AddAttr<int>(
 | |
|         "column",
 | |
|         "(int, default -1) The column position of Score used to rank items in "
 | |
|         "descending order. It must be in the range of [-rank(Score), "
 | |
|         "rank(Score)). "
 | |
|         "If `dim < 0`, the dim to reduce is `rank + dim`. "
 | |
|         "Noting that reducing on the first dim will make the LoD info lost.")
 | |
|         .SetDefault(0);
 | |
|     AddComment(R"DOC(
 | |
| PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model's
 | |
| performance.
 | |
| 
 | |
| Within some context, e.g. the "query", a LTR model generates scores for a list
 | |
| of items, which gives a partial order of the items. PositiveNegativePairOp
 | |
| takes a list of reference rank order (Input("Label")) and the model generated
 | |
| scores (Input(Score)) as inputs and counts the pairs that ranked correctly
 | |
| and incorrectly.
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair,
 | |
|                              ops::PositiveNegativePairOp,
 | |
|                              ops::PositiveNegativePairOpMaker);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     positive_negative_pair,
 | |
|     ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, float>,
 | |
|     ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, double>);
 |