You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							166 lines
						
					
					
						
							6.3 KiB
						
					
					
				
			
		
		
	
	
							166 lines
						
					
					
						
							6.3 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/roi_pool_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| 
 | |
| static constexpr int kROISize = 5;
 | |
| 
 | |
| class ROIPoolOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput("X"),
 | |
|                    "Input(X) of ROIPoolOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasInput("ROIs"),
 | |
|                    "Input(ROIs) of ROIPoolOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Out"),
 | |
|                    "Output(Out) of ROIPoolOp should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutput("Argmax"),
 | |
|                    "Output(Argmax) of ROIPoolOp should not be null.");
 | |
|     auto input_dims = ctx->GetInputDim("X");
 | |
|     auto rois_dims = ctx->GetInputDim("ROIs");
 | |
| 
 | |
|     PADDLE_ENFORCE(input_dims.size() == 4,
 | |
|                    "The format of input tensor is NCHW.");
 | |
|     PADDLE_ENFORCE(rois_dims.size() == 2,
 | |
|                    "ROIs should be a 2-D tensor of shape (num_rois, 5)"
 | |
|                    "given as [[batch_id, x1, y1, x2, y2], …].");
 | |
|     PADDLE_ENFORCE(rois_dims[1] == kROISize,
 | |
|                    "ROIs should be a 2-D tensor of shape (num_rois, 5)"
 | |
|                    "given as [[batch_id, x1, y1, x2, y2], …].");
 | |
| 
 | |
|     int pooled_height = ctx->Attrs().Get<int>("pooled_height");
 | |
|     int pooled_width = ctx->Attrs().Get<int>("pooled_width");
 | |
|     float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");
 | |
| 
 | |
|     PADDLE_ENFORCE_GT(pooled_height, 0,
 | |
|                       "The pooled output height must greater than 0");
 | |
|     PADDLE_ENFORCE_GT(pooled_width, 0,
 | |
|                       "The pooled output width must greater than 0");
 | |
|     PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
 | |
|                       "The spatial scale must greater than 0");
 | |
| 
 | |
|     auto out_dims = input_dims;
 | |
|     out_dims[0] = rois_dims[0];
 | |
|     out_dims[1] = input_dims[1];
 | |
|     out_dims[2] = pooled_height;
 | |
|     out_dims[3] = pooled_width;
 | |
| 
 | |
|     ctx->SetOutputDim("Out", out_dims);
 | |
|     ctx->SetOutputDim("Argmax", out_dims);
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ROIPoolGradOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
 | |
|                    "The gradient of Out should not be null.");
 | |
|     PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
 | |
|                    "The gradient of X should not be null.");
 | |
|     ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   ROIPoolOpMaker(OpProto* proto, OpAttrChecker* op_checker)
 | |
|       : OpProtoAndCheckerMaker(proto, op_checker) {
 | |
|     AddInput("X",
 | |
|              "(Tensor), "
 | |
|              "the input of ROIPoolOp. "
 | |
|              "The format of input tensor is NCHW. Where N is batch size, "
 | |
|              "C is the number of input channels, "
 | |
|              "H is the height of the feature, and "
 | |
|              "W is the width of the feature.");
 | |
|     AddInput("ROIs",
 | |
|              "(Tensor), "
 | |
|              "ROIs (Regions of Interest) to pool over. "
 | |
|              "should be a 2-D tensor of shape (num_rois, 5)"
 | |
|              "given as [[batch_id, x1, y1, x2, y2], …]. "
 | |
|              "Where batch_id is the id of the data, "
 | |
|              "(x1, y1) is the top left coordinates, and "
 | |
|              "(x2, y2) is the bottom right coordinates.");
 | |
|     AddOutput("Out",
 | |
|               "(Tensor), "
 | |
|               "The output of ROIPoolOp is a 4-D tensor with shape "
 | |
|               "(num_rois, channels, pooled_h, pooled_w).");
 | |
|     AddOutput("Argmax",
 | |
|               "(Tensor), "
 | |
|               "Argmaxes corresponding to indices in X used "
 | |
|               "for gradient computation. Only output "
 | |
|               "if arg “is_test” is false.")
 | |
|         .AsIntermediate();
 | |
|     AddAttr<float>("spatial_scale",
 | |
|                    "(float, default 1.0), "
 | |
|                    "Multiplicative spatial scale factor "
 | |
|                    "to translate ROI coords from their input scale "
 | |
|                    "to the scale used when pooling.")
 | |
|         .SetDefault(1.0);
 | |
|     AddAttr<int>("pooled_height",
 | |
|                  "(int, default 1), "
 | |
|                  "The pooled output height.")
 | |
|         .SetDefault(1);
 | |
|     AddAttr<int>("pooled_width",
 | |
|                  "(int, default 1), "
 | |
|                  "The pooled output width.")
 | |
|         .SetDefault(1);
 | |
|     AddComment(R"DOC(
 | |
| ROIPool operator
 | |
| 
 | |
| ROI Pooling for Faster-RCNN. The link below is a further introduction: 
 | |
| https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
 | |
|     )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker, roi_pool_grad,
 | |
|             ops::ROIPoolGradOp);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     roi_pool,
 | |
|     ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     roi_pool_grad,
 | |
|     ops::CPUROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
 |